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PREFACE

This book presents an introductory account of stochastic processes, estima-
tion theory, and image enhancement. It is primarily intended for first-year
graduate students and practicing engineers and scientists whose work requires
an acquaintance with the theory. The subject matter has evolved from a
course given at the graduate level in the Department of Electrical Engineering
at the University of Southern California.

The mathematical background assumed of the reader includes concepts of
elementary probability theory. the ability to use Fourier and Laplace trans-
forms, and an understanding of the basic ideas of linear system theory. Famil-
iarity with linear algebra is helpful but not essential. There is, in general, no
substitute for a rigorous mathematical treatment: however, it is felt that the
concepts and the important ideas to be presented may be obscured if too
many mathematical details are included. Nevertheless, the book is not a
*“cookbook™; the definitions and theorems are carefully stated.

The approach to and coverage of the material found here were heavily
influenced by the author’s practical experience with problems encountered at
the Jet Propulsion Laboratory concerning pointing accuracies of science
instruments for various spacecraft. It is, therefore, hoped that the book will be
useful to a large class of engineers and scientists working in the areas of guidance
and vontrol, communications, or other disciplines involving stochastic processes.
estimation theory. and image enhancement.

To make the book self-contained, the first chapter reviews the fundamental
concepts of probability that are required to support the main topics. The
appendices discuss the remaining mathematical background. The reader is
advised to review the appropriate sections before attempting the problems at the
end of each chapter. There are many examples scattered throughout the text,
and the problems at the end of each chapter must be considered an integral



part of the material. It is emphasized that the notation is generally indepen-
dent from one chapter to the other.

I wish to thank George Pace and Walter Havens for their encouragement.
Thanks are due Michael Griffin and George Jaivin for their editorial comments.
Finally, | wish to thank Professor Nasser Nahi for allowing me to teach the
course, upon hich this book is based. at the University of Southem California.
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CHAPTER 1
REVIEW OF PROBABILITY

1.1 INTRODUCTION

The concept of probability is used in a wide variety of scientific fields, such
as genetics, control, communication, econometrics, and many others. In what
follows the fundamental concepts of probability are discussed. References
[1]-{10] were utilized in the composition of this chapter.

1.2 SAMPLE SPACE, EVENTS, AND BASIC CONCEPTS
OF PROBABILITY
1.2.1 Sample Space

Consider an experiment denoted by . By sample space, we mean the set of
all eutcomes or &, which is denoted by S. The set S is also called the universal
set.

Example 1

Let €be the experiment of tossing a die and observing the number shown on
top. The sample space S is given by:

§=1{1,234,56}

1.2.. tvents

An event A is a subset of S, i.e.. 4 is a set of some outcomes which are
members of S. Note that if 4 and B are events,soare 4 U B, 4 N B, etc.

1



Definition 1

Two events A and B are mutually exclusive if there is no way that they
can occur simultaneously. i.e., A N B = ¥, where # denotes the empty set.

1.2.3 Basic Concepts of Probability

Let S be a sample space assoctated with the experiment &. With each event
A we associate a real number denoted by P4) and define it as the probability
of 4. The following conditions must be satisfied:

M OSPA)K
Q) AS)=1
(3) If AN B=j.then

P4 U B) = PlA) + AB)

(4) IT 4,. A,, ..., are mutually exclusive events, then

P(u Ai) SPAD+PAN+ .+ =) PA)
i=1 i=1

1.2.4 Some Important Resulits
The following conditions are true and are left as exercises:
M PAH=0
(2) P(4) = | - PlA). where A is the complement of A
Q)Y PAUB=PAV+ PR - P(A N B

1.3 CONDITIONAL PROBABILITY, TOTAL
PROBABILITY, BAYES’ THEOREM, AND
STATISTICAL INDEPENDENCE

1.3.1 Conditional Probability

Let 4 and B be two events. Then PLAIB) is denoted as the probability of
event A such that B has occurred and is detined as:

PA O B)

PAIB) = AB)

JAFPBY £ 0 (.1



1.3.2 Total Probability and Bayes’ Theorem

Given a sample space S associated with the experiment & and given events
A, Ay .., A, wesay A A,,..., A, represents a partition if the follow-
ing conditions are satisfied:

(1) A, NA;=¢, ifi#]

i=1

(3) PA) >0, foralli=1,.... k

Now, let 4 and B be events. Then we can easily show that:

P(B)=P(BIA)) PA)) + P(BIA,) P4 + ... + PBIA,) P(A,)

k
=2 PBIA) P4y (.2)
i=1
The above result is called the theorem of total probability
Utilizing the definition of conditional probability and taking advantage of

kq. (1.2). we now get:

PA,NB)  PBIA)PA)
PA\B) = nE -

. (1.3)
Y ABI4) PA4)

i=1

The above result is called Bayes’ theorem.

Example 2

An electronic company producing transistor radios has three plants produc-
ing 15%, 35%, and 50% of the entire output, respectively. Assume the prob-
abilities that a radio produced by these plants is defective are 0.01, 0.05, and
0.02, respectively. If a radio is chosen at random from the entire company,
what is the probability that it is defective?



Solution
Let

B = {x (radio): x is defective}

A= {x: x is chosen from plant i}

Using Eq. (1.2) yields:

3
PB) =Y PBIA) P4) = 0.01 X 0.15 +0.05 X 0.35 + 0.02 X 0.5 = 0.029
i=1

Example 3

Assume a radio chosen at -andom is found to be defective. What is the
probability that it comes from plant 2?
Solution

From Bayes' theorem given via Eq. (1.3),

PBIA,)PA,) 05 x 0.35
PA,IB) = - = g = 0503

Y ABlA) A

i=1

1.3.3 Statistical Independence

Two random events A and B are independent it and only if

P4 N B) = PA) P(B)

In what follows, we shall define random variables. and probability distribution
and density functions.

1.4. RANDOM VARIABLES AND PROBABILITY
DISTRIBUTION AND DENSITY FUNCTIONS

1.4.1 Random Variables

Let & be an experiment and S be the corresponding sample space. Then a
random variable is a real function X(*) from § into the set of real numbers,
i.e.. for every £ € 5. X(&) is real.



The choice of the term “random variable™ is not very appropriate because
X(*) is a function. not a variable. However, we shall use the terminology in
order to be consistent with the literature. In general, the random variables
may be real or complex: however, unless specified otherwise, X(+) is assumed
to be real. The random variable may be continuous or discrete.

Example 4

A fair coin is tossed three times. The sample space § is now considered to
be:

S = {HHH. HHT, HTH, HTT. THH. THT, TTH, TTT}

where H denotes head and T denotes tail. Define X(¢) = number of heads.
Thus, X(HHH) = 3, X(HHT) = 2, etc. The random variable so defined is
discrete.

1.4.2 Probability Distribution and Density Functions

Let X(+) be a continuous (piecewise continuous) random variable. Then the
distribution function corresponding to X(+) is defined as:

Fua)=P{E€S: X(§) < a} (.4

where a is a real number,

Before continuing the discussion. let us define the following notations:
(1) [XxX<x] 2 {t€S X¥)<x}

() [Xx>x) 3 {t€S: X&) >x}

3) la<X<hl 2 S a<X®)<bh}

Thus, Fy(a) can now be written as:

F (o) = PiX < al (1.5)

It is obvious that F,.(@) is a nondecreasing function.

5



Let us single out those random variables such that there exists a function
fx(-) 2 0, wheie

F,x) = f Ly 0) dt (1.6)

The function f,(x) is calied the probabili density function (p.d.f.). If fy(x)
is continuous (piecewise continuous), utilizing the Fundamental Theorem of
Calculus, we obtain:

dF,(x)
Jdx

f ) = (L.7)

[y (x) is sometimes defined via Eq. (1.7).

It is aiso easy to verify the following properties:

(1) Pla<X<bi= ffx(t)dt=Fx(b)- F @)
a

Q) Fx(w) =f fx(t)dr =]

3) A-=)=0

@ If fx(x) 1s continuous, then

X+4Ax

PlIx <X <x+Ax] = f fx(!)dt=Axfx(.§)

X

where Ax > 0 and x € { < x + Ax (using the Mean Value Theorem of
Integrals).

(5) PlX>x] = 1- PIX<x] =1- F,(x)

(6) If X(+)is discrete. then P(X,) >0 and ) P(X,) = |

-1



Let us now define Fy(-) for the case where X() is a discrete random
variable:

Fy)=PX<x]= 2 Pix)

x“x
Henceforth, we shall drop the subscript X from Fy(*) and f,(*) if there is no
ambiguity about the random variable X(-).

Some examples of common continuous distributions are given hclow.

(1) Uniform

f = lb-a asx<b
0, otherwise
0. x<a
_J)x-a
Fy)={5=2, a<x<b
1, xX>b

(2) Gaussian or Normal

1
fx(x)_ ﬁoexp [ 202

Fx(x) =f fx(a) da

where m and ¢ are parameters.

(3) Rayleigh

0, x<G

f) = {
(x/a®) exp |-x’/(2a’)]. x20

7



If there are two random variables X, () and X,(*) with possible outcomes
x, and x,, then a two-dimensional joint distribution function is defined as:

Fx.xz(xn'xz)é”xl <x, and X, <x,] (1.8)

Similar to the one-dimensional case, the two-dimensional probability density
function fy, xz(xl,xz) is a function such that:

AazFxlxz(xn’xz)
fX.xz(xl’x2)=’_Tax2— (1.9)

whenever a’l-’/a.xlax2 exists. It can be easily be shown that:

X' xz
Fx,xz("n'xz) =[ [ fx'xz(“n'"z)d“n do,, (1.10)

The following properties are true for joint distributions:

(]) Fx‘xz(oo’ oo) =1, Fxlxz(—oo’ -oo) =0

Q2) F X X (xl , xz) is nondecreasing with respect to each argument
172

B) Fy x,(=x))=Fy (x)and Fy ) (. )= Fy (x,)

) fx|x2(x|,x2) 20, for all x, and x,

& [ £ x, 000, doyda, =

The distribution and the probability density functions Fy, (x,) and
fx,(x,) are called marginal probability distribution and density functions
(statistics), respectively, and that:

Fy €)= Fx x &)

oF, (x,)

fy &)= ————a;l



The marginal statistics Fy,(x,) and fx,(x,) are defined in a similar manner.
12t A and B be events such that:
A= IX' <aland B= [ﬁ' <X, <ﬂ2|

62
r ];. fx‘xz(xrxz)abrl dx,

Then from Eq. (1.1),

=P(A nB): - S 1.11)
PAIB) =gy s (
[
By
where P(B) is assumed to be # 0.
Now, as §, + 8, =8,
x
fxlxz(":’ B) dx,
=§)= = 112
Fx'(mIXz 8 =PAAIB) fxzw) { )
The conditional p.d.f. fx (al X, = p) is given by:
an'(alxz =8) )
fxl(""xz =f)=— FY .
Utilizing Eq. (1.12) yields:
fxlxz(ﬂ. V]
=g=—"'2_ 14
In a similar manner. we can show:
fx| xz(a' 6)
fxz(ﬁla) = "“j}’;(a‘)'"‘ (.15



By combining the last two equations,

Ix (ﬂia)fxl(a)

2
fxl(alﬁ) fx’(ﬂ) (1.16)

The last expression is called the Bayes’ theorem for probability density func-
tions and it is sirwar to the Bayes’ theorem stated for the probability.

The conditional density concepts can easily be extended to the vector case.

1.5 FUNCTIONS OF RANDOM VARIABLES

For the sake of simplicity we shall discuss the function of a single random
variable and then extend it to multivariables.

Let X(-) be a random variable and let g(+) be a real valued function such
that
¥ =glx)

and suppose Fy(x} and fy(x) are given. Let us find Fy(y) and f,(y). We shai!
give the results via the following theorem.

Theorem 1

Let g(x) be & piecewise continuously differentiable function and that for

every y there exists m points x . x,,.... X, such that
y=gix,). k=12....m
and
g'(xk)¢0. k=12,....m
Then the following will hold:
Ixtx) ftx,)

£y = (1.17)

Ig'(xl)l MR Ig'(xm)l



The proof is not given here. However, the proof can be constructed as the
genenlization of the case where g(*) is one-to-one and g'(x) > 0 V° x (or
£'0r) < 0). For a proof, see references [1]. [9], or [10].

Example §
Let X and Y be random variables such that

Y=aX+b

where & and b are real constants. Assuming Fy(x) and fy(x) are known, let us
obtain Fy(y) and fy(y).

Solution

F,(0)=PlY <y] =PlaX + b < y]

=P[X <J’—;—"] =Fx(”; ")

* ow fy(v) can be obtained via Eq. (1.17). Thus.

-b
£ (VT)
g lal

f,0) =

**" means “for all.”

"



Example 6
Let X and Y be random variables such that:

Y=gXx)=x?

Obtain Fy(y) and fy(v) assuming Fy(x) and fy(x) are known.

Selution

Fy() =PlY Sy] =PIX? <y] = PI-Vy S X S\l = Fy(W9) - Fy-\V)

If y > 0, fy(v) can be calculated as:

)= ) L) -V +fx(ﬁ)
Y 'K'(xl)l |8'(x2)| 12¢-Vp)l |2(\[;)|

1 .
35 aC VLV ity >0
£, =

0, otherwise

=y <

-— -— e e o ———v
1
|
I | _y

2 x3 =y

which completes the problem.

12

(1.18)



Let X and Y be random variables wi* the joint p.d.f. f " Y(x, ») and Jet

z = glx,p) and w = h(x,p)

be real and continuous differentiable functions. We can obtain f,,(z,w) in
terms of fy y(x.y). For the sake of simplicity, let us assume that g(x,y) and
h(x, y) are one-to-one functions. Then, it can be shown that:

fxy(x.}’)

fzw(Z.W) = m , assuming J(x,y) # 0 (1.19)

where x and y must be solved in terms of z and w, and J(x,y) is given by:

aglx,y) oglx.y)

ax oy
Jx.y) = (1.20)
oh(x,y) oh(x.y)
ox ay

If there are

Gy e dx )
ordered pairs such that
z= g(x,..y‘.) and w = h(x'..)".).i =12,....m
then Eq. (1.20) can be generalized by:

m f (x.y)
XY“© , .
fzw(z.w) = ?_ l: l.l(x,,y—i); , assuming J(x,.»,) # 0, foralli (1.21)

The result can be extended to the general case, where we are dealing with an
n-random vector X.

13



Let X=(X,.....X,)and Y = (Y,,...,Y,) be random vectors such that:
Y = h(X) (1.22)

and, for the sake of simplicity, assume h is one-to-one, i.e., invertible.

Let g be the inverse function given by:
X = gtY) = g((X)) (1.23)

Let A and B be events such that B = [Y < y] and 4 = [X < g(y)].
Remember that the notation [Y < y] means {{ €S:y(§) <y, foralli =
1,2, ...,m}. It is obvious that

Fyly) = Fy(ely))

since they both represent the same probability. Thus,

y 8(y)
f Syla) da = f fx®) dp (1.24)

The last integral is actually:

"1 Yn
f f le.”Y"(yl....,yn)dyl...dy”=

R ey By,
f f fe . x ... .B)d8, ...dp,

-o ~ o0 A\

(1.25)

If we differentiate Eq. (1.24) or (1.25) integrals with respect to each com-
ponent of y, we obtain:

- ogly)
Hy) = fxlety) ’ -a-y—l (1.26)

1



where dg(y)/dy is the determinant of the Jacobian:

o, ag, |
%, -,
Bgn og 8
", A

Equation (1.25) can also be rewritten as (assuming dg(y)/oy # 0):

KEYD Sy

W) = ‘(?5(_)'_))—' =Tl 1.27)
oy
where
oh, i
5&: ax,
. i ,
S =, x )= =(%L))
Bhn ahn
5;; ox

If his not a one-to-one function, the result can be extended in a manner
similar to Eq. (1.21).

15



1.6 SOME USEFUL DEFINITIONS AND CONCEPTS

Let X be a random variable and g(+) be a real function. Then the “expecta-
tion” or th. “mean™ of g(x) is defined as the Stieltjes integral:

E[gtx)] = f gx)d Fy(x) (1.28)

If the reader is not familiar with the Stieltjes integral, then Eq. (1-28), when
Fy(x) is differentiable, would reduce to:

E [g0)] = f £, (x)dx (1.29)

which is used in most engineering books.
The *variance” of X is denoted as o} and is defined as:

oy = EX - m)? (1.30)

where m = EX, and oy is called the “standard deviation.” It can be shown
that:

oy =EX*)-m? (1.31)
We shall also have the simple but useful inequalities:

n
plixI > K] < EIMXV
K"

and

1
P[IX- ml>Ko,) <1<_2

where K is a positive number and n is any integer such that E[1X17] < oo,

16



If X(*) is a random vector, then

X(§) = (X, (B). X, (%), ... . X, (§)

where &£ € §. The case where n = 2 and X(§) = (X, (§).X,(§)) = (x,.x,) =x, +
Jx4 is defined as the complex random variable and it can be shown that:

EWX X, )< (EIX,1P)P (E1X, 1N (1.32

where p and g are greater than 1 and (1/p) + (1/q) = 1. The above equation is
called the Holder inequality.

For the special case, where p = ¢ = 2, we get:

EIX X, | S(EIX 1D (E1X, 122 (1.33)

Equation (1.33) is called the Schwarz inequality and will be used often.

1.6.1 Covariance and Correlation Coefficient

Let m; and o‘.2 be the mean and the variance of X,. and let us define
Hy = ENX - mUX, - m))

2

Then from the definition it is obvious that u; = ¢/, and, for i #/, we call y;;

the covariance of X, and X f and p y defined by:
n
Py = (L339

as the correlation coefficient between X,. and X’.. It can be checked that -1 €
pi; < 1 or, equivalently. |pﬁ| <1

17



The matrix Ay is defined by:

[ #yy - Hin
Hyy Hyy -0 My,

A= |- (1.35)
L"nl ”nz “nn_

ad is called the covariance matrix. Note that p; = u;: thus Ay is a sym-
metric matrix and, using the Schwarz inequality given by Eq. (1.33), we have:

) = 12 12
I"‘lil <o,0,= | / Ipil.l / (1.36)

which verifies |p;| <1. If 1Ay ) # O or, equivalently, the matrix Ay has the
rank n, we say Ay is nonsingular.

1.6.2 Convergence

Let X, ’Xz""'Xn"" and X be random variables defined from S —R.
Then the set 4 = {£: X, (§) - X(§)} is an event (that is, A CS). Thus the
probability that X, converges to X is defined.

There are several criteria of convergence. The following modes are defined
for both real and complex valued random variables as n — oo

(1) X,, converges in probability (or P-measure) to X » if for any given e >
O,P(an -XI>¢)->0(or limP(an - XI>€)=0asn o)

(2) X,, converges in quadratic mean or mean sauare (m.s.) to X if £(IX,, -
X12)-0.

(3) X,, converges with probability one or “almost everywhere” to X if
P(X,, = X) =1, or. equivalently, P(X, #» X)=0.

18



1.7. NORMAL DISTRIBUTIONS AND CHARACTERISTIC
EQUATIONS

The most important disiribution is the normal distiibution. The normal
p-d.f. £,(x) is defined as:

- 2
fx(x)= \/2_7_:0 exp [_%(x m) ] 1.37)

where X is a random variable (one-dimensional).

The ertor function erf(x) is defined as:

1 o y2
= -2 1a 38
erf{x) NG j(: exp [ 2] ly (1.38)

It can be casily verified that:

1 x-m)] _1 1 (x-m)/o ‘,2]
2 ——n =— - ) .39
Fylx) 5+ erf[ 5 ] 3 = j: exp [ =3 dy (1.39)

Note that if we take the derivative of F(x) we get f(x), i.e.,

f) =0+ \/z_l"exp ['%(x;m)z] (‘};l_(x;m))

. \/z—:rae"" [%(xam)z}

as asserted.

Note that in the above equation we have used the Fundamenta! Theorem
of Calculus, which states: If
hylx)
Gx)= &)y

hl(x)

19



where i, and h, are differentiable and g is continuous, then

. dh dh
G
__".1‘_1,(;{.) = g(hz(x)) "‘Itl - g(h|(x)) Tl;l

From the above equation .e get:

It can be verified that for the normal distribution the p.d.f. 1s symmetrie
about the mean m and

= odd

~
=
!

‘0.
E{Xi"y =

2. < 2
1v35 - (2k- he**, n 2k (even)

Also, it can be shown tnat if X, and X, are independent normal random
variables. with respective {m.0) and (m,.0,). then their sum X =x, +x, is
also normal with mean m = w1, + m, and variance o2 = of + og. Thus. the
summation of independent nuimal random variables produces a new normal
random variable, However. the “Central Limit Theorem™ states (under fairly
wide conditions) that the sum of a large number of irdependent random
variables is approximately normally distrib rted. even though each indmidual

random variable may not be normal.

1.7.1 The Vector Case

Let X = (X,.Xz......’(")'. where T is the transpose. be a normally
distributeu random vector: thus,

- o SN TN
fx(.v'.xz......vc”)-(:")"/2 \/ﬁ" c.\p{ 3(x m) A (x m)}

(1.41)
20



where A is the covariance of X, ic., A 2 E[(x - m)x - m)'], |Al is the
determinant of A, and

[m, ]

m=| . | =EX)

m
L nj
It can be shown that A . 3n also be written as

A= EXXT) - mm®

Notationally we can write fx(x) = G(xm,A), which means the Gaussian
density of X has the mean m and the covariance A.

In order to derive some important properties in the normal random vectors.
we need some basic definitions.

1.8. THE CHARACTERISTIC FUNCTION

Recalling from the one-dimensional random variable. let X be a (one-
dimensional) random variable. Then the characteristic function of X is defined
as:

C) = Erexp (uX)] = f exp (jux) £, (x} dx (1.42)

It is seen that the characteristic function is the Fourier transform of fx(x);
however, the positive sign in the exponent simply means that we must use the
negative sign n finding the inverse. Thus. the density function f,(x) can be
obtained from (using the Fourier transform pair):

fx(x) = %r' C(u) exp (-jux) du (1.43)
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For a discussion of the Fourier transforms, see Appendix C.

It can be shown that

cer=Y "%’-‘ m,

K==
using Eq. (1.42) where
m, = f x* foe)dx
and making use of
oY Ja )
m, = i €5

The most useful property of the characteristic function is that it relates the
sum of independent random variabies. It is also used to simplify calculations.

1.9. DEFINITION EXTENDED TO RANDOM VECTORS

The characteristic function of a random variable X = (X,,....X )T is
defined as:

C@)=Clu,,...,u)=Efexp (u'X)]

= ff...fexp(iuTx)fx(xl.....x")dx'dxz...d.\'"

(1.44)

Now let us apply the definition given by Eq. (1.44) to the Gaussian random
vector X = (X,....,X,)T and make the following claim:



Theorem 2

The characteristic function of the random vector X is given by:
C(u) = exp [juTm -%n‘ A n]

Proof

Lefi as an exercise.

Theovem 3

If two normal vectors X and Y are Gaussian with respective means (vec-
tors) my and my and are also uncorrelated. then they are statisucally inde-
pendent.

Proof

Let X be n-dimensional and Y be m-dimensional with respective covariances
Ax and Ay.

Define a vector

~N

]

Ne>
' Ll '
< "
| S




Define Ay (c

):

Axy = EI0X - myXY - my)T)

Before proving the assertion, observe that ATy = E{(Y - myXX - my)T] =

Ayx- Let us now calculate A,:
[ Rl R fensl

Ay =E[Z- my)Z- w,)') =E

Then
_ x| A Axy
=t oo (L[] [ 172
= ! °®
enmir ) Ax o Axy
- Ahx . Ay

Moo

0" Ay

= (det /\x)(det Ay)

a ["x : _A’s!] .
Ayx .+ Ay

This substituted in f(x.y) yields: f(x.y) = fx(x)} fy{y). Done!
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Theorem 4
If X and Y are specified as in Theorem 3, then we daim:

£xiy) = E((I., s .X') ! (.V.' ... J’-»’ Wy + Axy A;.(Y - y)
and the conditional covariance matrix Ay |y is defined by:
Agiy = EX - BXIVIX - BXIV)T ) = Ay - Ayy Ay 4y

The proof is simple but lengthy and has been vmitted.
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1.5

1.6

1.7

An um contains 4 green and 6 blue marbles. Two marbies are drawn out
together. One of them is tested and found to be blue. Find the prob-
ability that the other one is also blue.

Let A and B be independent events associated with an experiment. If
the probability that A or B occurs is 0.7, while the probability of
occurrence of 4 is 0.3, detenmine the probability of occurrence of B.

Three dice are thrown. Find the probabilities of the events of obtaining
the sum of 10, 11, and 12 points.

A continuous random variable X has the distribution function:

1-(1 +ax)exp(-ax), ifx>0
o) =
0, ifx<0

(a) Find the characteristic function.
(b) Find the mean and the standard deviation.
Let the joint probability density finction of the random vector (X, Y) be
given by:
xyexp [-(&* +y*)2), ifxandy >0
S y&y)=

0, otherwise

() Find £, x), £, (), flxly), and f(y lx).
(b) Are the random variables X and Y independent?

In the previous problem, if in addition we have the random variables Z
and W given by:

(@) Z=aX+bY, W=cX+dY
®) Z=YX* UX), W=XY} (Y)
where {{*) is a unit step function, find fzw(z, w).

Finu the probability density functions of Z and W. Given:

fyy®y)=2exp-[x? + 2y + 27



(a) Determine the mean and the variance of the random variable Z = XY.

(b) Determine the mean and the variance of the random variable W = X? +
Y.

1.8 If X and Y are independent 1andom variables such that:

-—, ifixl <1
ﬂ’(l_xz)llz

[ @)=
0 . otherwise

£y0) =L exp 2 1267) W)
k

where {{y) is a unit step function. Show that the random variable W =
XY is normal with mean zero and variance k2.

1.9 If in a vector case of a normal random vector, n = 2, m, =m, = 0 and
By =My, = 1, show that:

2, .2_
, T X3 pr.x2
f&,.x,,p) =

1 X
— e |-
2n(1 - p?)'2 231 - p?)
where p = By, =8y,

1.10

(@) fAisanm X nn nx such that

2] [x,
% Xy
2= Xs=
Zn X
. 1 LINEAR OPERATOR -
— ’
A




show that if X is normal so is Z. Use the property of characteristic
equations given by Theorem 2. That is, show that the characteristic of
2is:

C(t;my, Ay) = exp [i(tTmz) - %(tT Azt)]

where t =

t
n

= T
(b) Show that Ax =4 A 47



CHAPTER 2
STOCHASTIC PROCESSES

2.1 INTRODUCTION

Very often we are interested in observations that are made over a period of
time and that are affected by random chance. This situation is termed a
stochastic process and is defined below.

2.2 DEFINITIONS AND EXAMPLES

Definition 1

A stochastic process X(r,w) is a function of two variables, where w is an
element of the sample space and ¢ is a parameter (time) which belongs 10 a
set T (time interval).

Definition 2
For every w, € § (sample space), the function X(t,wo) is called a sample
function of the process.

The process X(t,w), in general, can be complex, but, without any loss of
generality, we shall discuss X(s,w) when it is real. Thus, to each sample point
w €S (sample space), we are assigning a waveform X ;» Which is the function
of t (time) such that:

X': w = X(tw)

Hence, each sample space will have a collection of waveforms. cach assigned
to a member WES The collection of all of these waveforms (as many as the
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cardinality of S) is called an ensemble. Thus, each individual member of the
ensemble is a sample function.

Example 1

Assume that we toss a coin twice in succession. Then, our sample space S
is the collection of four outcomes:

S={HH,TT 0T, TH}

Wy W, Wy W,

There exists four sample points w,, w,, w,, and w,. The probability of each
occurrence is 1/4 (the coin is a fair one).

Let us now define a function X '('): S = R such that:

X‘(wk) = X(t,wk) = sin kt

Thus, the ensemble consists of four elements (as many as the cardinality of §,
which is 4). Let us denote the ensemble by &. Thus,

& = {sin ¢, sin 2¢, sin 3¢, sin 4¢}

and the probability assigned to each waveform is also 1/4.

Remark 1. The cardinality (number of sample points) corresponding to the
sample space S may be finite, numberably infinite or dense.

Remark 2. For a stochastic process X '(w) or X(rw) is an appropriate
designation. However, in common practice the process is represented by X(f).
which actually means X(z.w).

2.2.1 More Words About X(t)

The notation of X(t,w) may be better understood by the physical phe-
nomenon. Consider a system such as a radar antenna receiver. Suppose the
noise signal at the output is of interest. Each time we turn on the system, it



will yield a different noise waveform. The collection of all of the noise wave-
forms is the ensemble of this process (see figure below).

xitaay) / v'\ '\ /\ .t
v/

RN e VAN
VARV,
™\ IJ"\ N

e
NI AW/ =
=0 =t Ffz Pl’a \

1

xltw,) /

x(0) x(t,) x(tz) x(r3)

It is important to mention that each sample function (waveform) is
assigned to a single point w € S. Thus, after w is specified, the waveform is
deterministic (not random). The randomness is associated with each sample
being chosen (occurrence of a sample).

Example 2

Suppose a receiver (antenna) detects signals of the form:
X(2) = a cos (wt + Q)

where a (amplitude) and © are both random. Suppose by some sort of prac-
tical experience we know the distribution functions of © and a (for example,
© or a could be Poisson, Gaussian, uniform, or any other probability density
function).

Let us assume a is Gaussian and © is uniform over the open interval (0.27].
Then,

I _@-my
fa(ﬁ) Umcxp [ ]

20?

k)



and

. 6 € {0,2n)

t
]

f(0) =

0, clsewhere

Corresponding to each sample function, a and © are assumed to be constant,
but they definitely vary from one sample function to the other.

- 4 LD
=0
Example 3
Consider
X()y=ar+b

where a is a random variable, and b is a constant.
Remark 3. For the one-dimen-ional case X(r, w) becomes a random

variable for each fived 1 = #, since X(r,.w) becomes a function of w only.
i.e.

)&’(r| Wy S—+R
which is the definition of the random variable.
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Remark 4. Rem:mber that we use the notation X(tl,w)(or X 'n(“’» by
either X, or X(I. ).

2.3 FIRST-ORDER STATISTICS

The distribution of a real process X{(f) for a fixed ¢ = t, is defined:

Fylx.t)=PiX(,) <x) 2.1)

Remember: {X(rl) <x}=(wWES: X, w) < .
Definition 3

The first-order statistics are those items of information that can be com-
plzetely determined from F,(x, 1), such as £, (x. ), m(t) = EX(s) or E[X(1)]?,
%%y etc.
Definition 4

A nonnegative function fx(x. t) 2 0, such that

Fylx.n = f S x 1y dx (2.2)

s called the probability density function (p.d.f.). If F,(x:¢) is differentiable,
then, from Eq. (2.2):

— i = fyx. ) 2.3)
Note that condition (2.2) is a weaker condition than that of (2.3), because
f(x.1) may exist even though Fx(x.t) may not be differentiable.

Note that:

E[X(n)] =f xfy(x.t)dx

will be denoted as either m(r) or n(t) in what follows.
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Example 4

Let us contitue example 3, X(¢) = at + b, where ¢t > 0, b is a constant, and

a is a Gaussian random variable:

ACH \/;_1-7 exp [ 923]

Find the first-order p.d.f, [yx. o)

Solution

From X(¢) = a1 + b, we get a = (1/1) (X - b). We know:

RAC)
[ D) -_d_x—{.
da
Now dx/da = t; since ¢t > 0, we have
dx| _
——i =t
da ]
and
a =—]-(t - b)
i
Hence,

[ 4]
exp |- 5

fx. 0=

o et
Vint t\2m 2

]

(24)

Important Reminder. From now on, we shall drop the subscript X from

F x(x. t)and f x(x. 1) whenever it is appropriate.

Example §
Obtain the mean and the variance of X(r).
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Solutien
EX(t)=m(t) = tEa) + E(b) =t -0+ b=b
Note: From Eq. (2.4) it is obvious that K@) = 0, ¢® = | = E(a).
Since
Sy = EX* @] - E(x)]
then we must calculate E[X%(2)):
EX()®) =El(ar + b)’) = E[+*a® + b? + 2rab])
= 2 E@®) + b% + 2bE@) = * (1) + b? = ¢* + b?
Hence,
o} = (I +bY)- EX(X) = (1 +b%)-p? = 1

Remark 5 Regardless of the parameter ¢, the mean of X(¢) is b; however,
both E(X?(r)) and 0}, are dependent on r.

Example 6

Consider the random process X(¢) given by:

X(t)= A cos (wol +0)
where © is a random variable which is uniformly distributed over [0,27] and
the amplitude A is constant.

Obtain the following first-order statistics:
(a) Probability density function
(b) m(r)

(c) The variance of X



Solution

(a) We can consider the sample function x to be

x=4 cos(uot+0)

where x and 0 denote the parameters {possible values of a random
variable X and ©, respectively). Since © is uniformly distributed, we
get:

1
55 0€(021]

/o0 =
0, otherwise
The probability density function f x(x,t) can be obtained as follows:

160) 1,0,

fx(xyl)z dx(ol) +‘d‘_(oz)
de ! do

because there are two values of 0 € [0,27] such that x = 4 cos (w ! +
0), one value of 8 is obtained where 0 < w,f +0 < and the other
is obtained where 7 S wyt + 0 < 2r.

Now

% =-4 sin (wot +0)=-4 V1 - cos? (wot +0)

=-VAT-x? for 0K wyr+0<z and Ixl <4

and

dx

dé

dx
o

0=9| 0=92



L fn =
2z

1 !
R
dé 0=o, d0 6=0,

=*——l=:, for IxI<4

7 A% - x?

1
—, Ixl<A4
f,(x,:)={n/4’-x’
0,

otherwise

®) mie) = EWX0)] = 4 f cas (w,t + 0)£(0) do

2 |
Af cos (wof + 6) 5~ do = 0
o

Alternatively,

m(r) = E|X()) = f x fx,1)dx

A 1
=f X —————— dx =0
-A “(Az_XZ)IIZ

x3(®) ()
2n M""T\
() EX(1)*) = f A% cos? (wgt +0) TR
0
A2 2n A2 A?
Tn— . “"‘COSZ(wol“'a)] d0=z;(21f)=—2-

- 2 2 A? A?
oy TEXO) - X0 =5 - 0=5

37



Remember that:

oy = BX*) - BB = BX?)

- A
< [T renas [fe Sl
]:-xf ‘) _‘x I’V".l.'z

2.4 SECOND AND HIGHER ORDER STATISTICS

For any arbitrary set of fvalues ¢,,¢,.....r, and random variables X(¢,)
=X, .X(t") =X, we define the n-dimensional joint distribution as:

Rx ,x, . ..,Xx 0, 8. ... t)=PX <x‘....,Xn<x“}

and the pdf. fx,.....x .t,,....1,)is a function such that:

= T
m f(xl‘....x".tl.....t")>0. forallx—(xl....,x") and

t|, RN "n
() A, X ) S
1 n
j f(x| X b l")dxI dx
Again, if F has a partial derivative with respect to x,..... x_. then
FAx ,....x . t.....L)
L AR A A
féx, Xurly ) ox, ax, ...dx,



2.4.1 Autocorrelation; Covariance

The correlation between two waveforms from the same ensemble gives
some useful information about the waveform. The first-order statistics do not
yield all the information about the random process, since the first-order p.d.f.
cannot indicate the dependence of the random process (signal) at two differ-
ent times (remember that X(¢,) and X(¢,) are two different random vari-
ables). Thus, it would be advantageous to obtain a measure of relating the

process X(t‘) to X(lz).

For the real process X(r), the autocorrelation function R,(,.r,) is
defined as:

Rx(rl. tz) = E{X(r.) X(rz)}=fjx|x2 Sle x50, tz)dar,dx2 .5

and it can easily be seen that it is a function of ‘ and 1,

The corresponding covariance (autocovariance) of X(2) is defined as:
C\(t,. 1) = E{(X(t)) - m,) [X(t,) - m,]} (2.6)
Note that:
Cyt,. 1) = E{X(t)) X(t,)} - mom, = R\ (¢, .1,) - m/m,
Thus, from (2.6), it is obvious that if t, =t, =1, then:

= 2
Cx(r. 1) = %% 1)

More Definitions

If X(¢) and Y(#) are two processes that (one or both) could be complex.-
then Eqgs. (2.5) and (2.6) are generalized as follows:

R (1, 0) = EYIX(t)) X" (0,1} (2.7)

C,(t,. 1) = E}[ X)) - m ) [X'(2)) - m}]}
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=R, (t,. 1,) - m/m, 238)

where “*" denotes the complex conjugate.

The cross-correlation between X(r) and Y(¢) is defined as:
R, ,(t,.1,) = E{X(t)) Y"(1,)} 9)

and its corresponding cross-covariance as:

Cyyt,- 1) = EJIX() - m, ) [Y (1) - m ]}

=Ry (t,. 1) - mm, (210)

It is obvious that the nth order p.d.f. contains all the information about the
fist (n - 1) p.d.f. For example, we shall illustrate this point by the second-
order p.d.f. Let f(.x| 1 Xyul)s ‘z) be given, then:

f(x..xz.t',tz)=f(x.,t|)f(x2,r2 lx|.tl)

We know that

f(xl.tl)=f fx x, 0. 0,)dx,

and the conditional p.d.f. can be obtained as the ratio of f(x‘,xz.tl.lz)
over f(x, .t,).

The correlation coefficient between X(l') and X(tz) is defined as:

=€‘x('|"2)

Py (2.11)

g, 0
Xy X,

as expected.
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2.5 STATIONARY PROCESSES

Definition S5

A stochastic process X(f) is said to be strictly stationary if the entire
family of its finite-dimensional distributions are invariant under a translation
in ¢. That is, for given ¢,,¢,,...,¢, time points, the distribution of X(¢, +
7), X, +7),..., X(l‘,I + 1) (for X(+) real or complex) is independent of 7.
F(x|.x2, N NI ,tn) = F(xi,xz. e Xttt T)

(2.12)

for all n. Thus, we need to check Eq. (2.12) for all finite n. For n = 1, since
Fx.0)=Fx,t +1)or f(x,t) = f(x.t + 7) (if F is differentiable), then:

EX(t) = EX(t + 1), forall 7 2.13)
which implies EX(¢) must be constant. For example, let 7 = -¢, since EX(f) =

EX(¢t + 1) = EX(t - 1) = EX(0) = constant (that is, EX(t) = EX(0) for all ¢ as
well).

Conclusion 1

For a strictly stationary process EX(f) is constant and is independent of
time .

Now if Rx(tl,rz) exists for all r, and ¢,, then by definitior of
R,(t,. 1)

Ry(t,.t,) = EIX(@)) X"@)) = E[X(, + D X" (1, + D} (214)

Bquatic;n (2.14) is true for any ¢,,7, and 7. For the special case where
7=-t,, then R,(¢,,t,) in Eq. (2.14) becomes:

R, (1), 1)) = E[X(t)) X"(r,)]
=E|X(t, + ) X'(t, + 7))
= E[X(ty - 1) X (1 +7)]

= E[X@t, - 1,) X"(0)] (2.15)
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Thus, we have shown that R x(’l' t,) is a function of time difference ¢, - ¢,
(for the strictly stationary case).
Conclusion 2

It turns out that for the strictly stationary case we have Rx(l|,t )as a
function of the time difference r, -t From now on, when this condmon
prevails, we shall write R x(! t ) as R(t
Conclusion 3

For strictly stationary processes, we have:

EX(t) = constant = m (2.16a)
EX(t)) X'(t,)=R(, - 1) (2.16b)

The condition given by Eq. (2.16) is a consequence of a strictly stationary
property (2 necessary condition). In a strictly stationary process, we must
have at our disposal all of the joint distribution functions for k=1,...,n
(finite n) and, in addition, they must satisfy:

Fx,,....x,.t seees )= Fx,, L X 00 tr,.. .0t T)

foral k=1,...,nand all 7.

The above condition is very stringent. It turns out that very often the
second-order statistics are sufficient to characterize many physical situations,
which leads us to define some important terms.

Definition 6

The process X(¢) is stationary in the wide sense, if conditions (2.16a) and
(2.16b) are satisfied.

2.5.1 Some Important Properties for the Wide-Sense Stationary
Process X(f)

MR, -1)= R’ (t - t,) or, eqmvalently, R(r) R(-),since R(, -
)= E(X(t ) x* (t ) = EWX(t,) X"t =R"(t, - 1,).

(2) Since E1X(DI? = E[X(0) X"(1)] = R(0), then, oxm = R(0) - m?
which is independent of time 7.
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(3) From the Cauchy-Schwarz inequality:

E[1X(t,) X*(t,)1?] < E[1X(,1?] E[1 X(t,)12] = | R@)} < R(O),
for all ¢

Example 7

A quantized process has associated sample functions, where each sample
function consists of sequences of pulses of unit width.

The pulse amplitudes take the binary numbers +1 and -1 with equal prob-
ability. The successive amplitudes are independent. Assume that the starting
point of each sample function is random and uniformly distributed over a unit
interval (denote the starting time as 8). Find the correlation function of X(¢).

| (a)
1
1 P N 1 >t
- — I | w— C— et
F 3
| =t
{b)
' —
>t
-1 1 | o
|
o)
[ 3
1
DEY RS =1
(c)
» 6
f, - ' "
Solution

The random processes have discrete values of +1 and - 1. Let X(t,) =j and
X(rz) = j, where i and j could be +1 or - 1. Then,

R(,. 1)) = E[X() X@)) = 25 D0 xx, P, )
LA )

8



where
PG, j) = P{X(t,) = i and X(1,) = J}
LR, )= (O PAY) (D ED PO

+EDEDPEI-DHEDDPLY) .17

Now if we obtain P(i,j) for i and j corresponding to +1 or -1, we will be
done. These probabilities are obtained as follows:

P = PIX@,) = 11 X(y) = 1] PLXG ) = 1]

For a sample function, iet 8 be the starting point of the pulse in which ¢, occurs
(uniformly distributed, see part (c) of the above figure). Now ¢, either takes
place during the same pulse as r, <1, (case 1) or during another pulse; we
now write:

PLX(t,)= 11 XV =1] =Plt, <0+ 1] +% Plr,> 0+ 1]
(The 1/2 is used because outside the pulse, given X(r,) = 1, it is equally likely
that X(¢,) be citter +1 o1 -1.)
Now P(1,1) can be written as.

12

i P S
{ppz <O+ 1+ 5P, >0+ 1]} PlXa,)=1]

A1)

1 1
:E{P[t2 <@ +1] +3P[t2 >0+ l]}



Note that

Plt, <0 +1] =P{o>1,- 1] =1-Pl6o <, - 1=1-Fe -
and remember that F{¢) = ¢ - ¢, -N=t- 1, +1
F(tz- D=1,- l-t,+ l=tz-tl for the case '2‘1‘,<|-
Because of symmetry, P(1,1) = P(-1,~1). In a similar manner, we will find:
1, - if N
4(t2 1) i t, -t <1

PQ-D=P-11) =

1 .
re if rz—tl>|

Now, for 7 =1, - r, (¢, could be larger than t,), the general case R (7
can be found (see Eq. 2.17):

1- Il if 7l €}

Ry(r) =
0, iflrl > 1
Rx(f)
v \ —p T
-1 1

Henceforth, throughout the text, unless specified otherwise, by the sta-
tionarity of a process X(f) we mean stationarity in the wide sense.
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Definition 7

Two processes X(r) and Y(7) are uncorrelated if, given any t, and 1,, we
have:

E[X(t) Y (1)l =myti Y m (1) (2.18)

as a consequence of condition (2.18), we have:

Cyy(tyo 1) = E(IX(t)) - my(t)] [Y'(r,) - m3(2,)]

= E[X(t) Y' @) - my(e) mo(t,)
=m, ) my(t) - my () my(t,) =0

Definition 8

If E[X(t,) Y'(r2 )} =0, then we say X(¢) and Y(¢) are orthogonal.
Note that ny(tl.tz) = 0 implies that [X(tl) - '"x(’l)] and [Y(rz) -
m,(t,)} are orthogonal processes.

2.6 CONTINUITY AND DIFFERENTIABILITY

The continuity of the process X(f) with respect to ¢ is restrictive. However,
the continuity in the quadratic mean (mean square) is not as restrictive. We
say the process X(r) is continuous at r=¢ in the quadratic mean (q.m.) if
E| IX(to)| 2] ~ists for t = £, and

lim E{1X(e)) - X(tr, + €) 12} = 0. for every (2.19)
€-+0

If condition (2.19) holds for every ¢ € {a, b], then we say X(¢) is continuous
in the quadratic mean (mean square) in {4, b]. If condition (2.19) holds for
t € (-o0,20), we say X{t)is continuous (in the q.m.) everywhere.

It is left as an exercise to verify the following claims.
Claim 1. X(1) is continuous in the qm. at ¢ = ¢, if and only if the

covariance R(f,.1,) is continuous at every 1, = 1, (diagonal point or

2
element).
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Note: In order to prove the above claim, we need .o verify the important
relationship:

E[lX(t +€)- X()I%] =R(t +e,t+ e - R(t, t +¢€)
-R(t+e 1)+ R D (2.20)

The continuity in the q.m. is much weaker than the sample continuity. A
classical counter example is the Poisson process:

(4
PIX() = K] = (,’:+) exp [-A1]

where X(r) is a staircase type and, therefore. discontinuous; however, R(z,,1,)
= X min (t‘,tz), for all ¢, and r,, is continuous, whith implies X(r) is
continuous in the q.m. even though X(/) is not continuous zs a sample
function.

If X(¢) satisfies:

+ -

lim E[I -X(—’—z—)——)@ x‘(r)li] =0 (224

=0
We say X'(¢) is the derivative of X{s) in the q.m. and we write:

Xt +e)- X(r) qm. .,
€ €9 X

We can verify that (use Eq. 2 20):

fxa+e)- X X' tey)- X'(r)]

=
Rt +e . .t+e)-Rit+e . .- Rtr+e)tR(t Y1)
- A_«,_;' _2 1 R h?. R (‘\ ﬂ‘))
€, € e
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Claim 2. The derivative X'(t) of X,") exists in the q.m. if and only if

3 Ru,. 1)
o1, 01,

exists and is finite for ¢, = 1, =t fsee ©q. 2.22) because, as €, and € -0.
Eq. (2.22) becomes the »: ond partial for f,=t, =t Thus, the autocorrela-

tion of X'(+) is given by:

R, W, 1,)

Ry oty 1) = a1, 01, (2.23)
By direct calculation, it can also be shown that:

OR, . (1.1,)
Ryt 1) 2EIX() X 'i1)] = —i"af,—zl 2 (2.24)

oR, .t )

~ . >* X

Ryttt 2R X} = =75 v (2.25)

AR, Uty 1)
Ryt r)AE[X(t Y X (e )]-—~a~v— (2.26)

If Xtr) is stationary. and utilizing 7 = 1, =y ws well as Egs. (2.24) (2.26),
we get:

d’R M)
A7) = - — S (2.27)
d1'2

Ry y

From which:

d
L0 = E[IX©O =~ e (2.28)
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2.7 ERGODICITY AND STOCHASTIC INTEGRALS

In order to obtain the complete statistics of a process, the ensemble of
sampie functions is needed. Loosely speaking, a process is called ergodic if the
complete statistics can be determined from any of the sample functions in the
ensemble. Thus, a single member of the ensemble is assumed to represent the
entire ensemble. Before giving a basic definition of ergodicity, the concept of
stochastic integration is needed. Thus, we shall talk about the stochastic inte-

grals.

2.8 STOCHASTIC INTEGRALS IN QUADRATIC MEAN

For the great majority of applications, we do not need the most general
form of the stochastic integrals. Thus, we shall only consider two cases of
integrals: Reimar.n integrals of the form:

b
A, = f 2(r) X(t) i (2.29)
a
and Stieltjes integrals of the form:

b
A, = f g(t)dX (1) (2.30)

where [a,b] is the closed interval and is finite, g(7) is a deterministic func-
tion, and X(¢) is a random process. For the sake of simplicitv, assume EX(t) =
0 = mfr). Thus,

Rx(l, u) = (‘X(t, u)

Suppose [ = [a, b] is finite, and let the points a,.a,.... & define a

partition, that is:

2 m+1

a=a <¢x2 ...<am” =b

Let S, and S, denote the sums corresponding to A, and A, respectively:

m
5, =-}:1 gle) X(@)ay, | - o) (2.31)
j*=
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S, =2 s@)lX(a,, ) - X@)]
Iadl

-
(&%)
‘oo
]

A

Since Sl and S, are suramations of random variables, S, and S, are also
random variables with l:‘(.'i‘) = E(Sz) = 0 (because FX(r) = 0 by assumption

for alt ¢).

Now as m - oo and the maximum of ("'l*l
S, exist (in the quadratic mean), that is,

where

m - and max(ai” - ai)-*O
Remark 6. From the above, we mean:
lim E[14, - §,1*) =0
and
im E[14, - S,1%} =0

whenever condition (2.35) is satisfied.

- al) - 0, the limits of Sl and

(2.33)

(239)

(2.35)

Claim 3. 1t can be verified easily that if R(s, u) is continuous over [a, b} X

la, b), and if gtr) is such that the Reimann integral:

b b
¥, =ff g g () R(t, u)dr du
a a
50
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exists, then the integral A, exists in the quadratic mean (q.m.) and
ElA,1*=w, and E4,)=0 (237

Remember that E(A|) = 0 (this was shown above).

Claim 4. Also, if R(t, u) is of bounded variation (IR(s, v) | has finite
number of maximums and minimums over [a, b] X [a, b]), and if g(¢) is such
that the Stieltjes integral:

b
W, = f f £ £ @) dR(t, u) (238)

exists, then A2 exists and
El1A,12 =W, and EW,)=0 (2.39)

To prove (2.37) and (2.39), we consider another partition of [a, b]:

a=u, <u2 "‘<"m+| =b

and we let .S"I and S'2 represent the sums corresponding to (2.31) and (2.32);
then we can show (by utilizing the definitions) that:

b
B, 5, f f &) g (1) Rt u) dt du (2.40)

where

m - <0 and max (a,.“I - al)—>0 and max ("i - u,.) -0 (241

+1

Similarly,
b b
EG,S,) - f f £(N 8" dR(1, u) (242)

as condition (2.40) is satisfied.
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Remark 7. We have assumed that S, and S, converge in the qm. It is
easily shown that the limit in each case will be independent of the particular
partition chosen.

Remark 8. If either S, or S, converges as & - -% and b > oo, then the
limiting integrals are defined accordingly.

Remark 9. Since

4, =r (1) X(6) dt

[ b b
£|4||2=E[A|A;]=Ef g(t)X(t)dtf g‘(u)x‘(u)du]

r b
= kK f f g0 g @) X(0) X" (u) dr du]
a

If we let the “expected value” E operate on the integrand, we would get the
result given by (2.40). However, we can only do this if the appropriate condi-
tions are satisfied.

Example 8

Let g(¢) = 1 and X(r) be a continuous real process on {a, b] . define:

q=f X(t)dt

Find the mean and the variance of g. It is easy to show that the conditions of
claim 3 are satisfied (m(z) may not be zero, which was assumed for con-
venience in claim 3).



Solution

b
Eq=F [ f b ((3) dr] = f E(X(0) dt = f m(t) de

Now we need to calculate E(g?), since o: = B(¢®) -Eq:

b b
q = f f X(t) X(u)dt du

Again, the conditions of claim (3) are satisfied; thus,

& ]
E‘(q2)=l{[ f X(1) X(u)dtdu]
b b
=fj R(t,u) dt du

Thus, the variance becomes:

b b
o: = f f [R(t, u) - m(t) m(u)] dr du
b pb
= f f Qt, u) dt du

In Example 8, let

Example 9

T
q =ﬁ; X(t)dt

~-T

and assume X(¢) is stationary (wide sense); find o: .

(2.43)



Solution
From Eq. (2.43), we get:

1 T mt T
Eq=ﬁ‘[rmdt=ﬁ]-r=m=cmstam

From Eq. (2.44), we get:

2 1 T T
= — C(t - u)du dr (2.45)
% 41".[_1./:7 =

Equation (2.45) can be simplified much further.

Before proceeding with the simplification, let us review some simple mathe-
matics (~oordinate transformation). Let g, and 2, be continuous (real) func-
tions, such that:

x=g,(w2)

Yy =8,(w,2)

9,.95)
v _ vy

T3, N,

For example, (g, » &) maps D’ onto D. Then the following well known result
is satisfied;

JS ranacar= Sf 16, gz(w,z))ggv'%))dw dz

D D

(2.46)



For any continuous real function f(*,*), d(x. y)/d.v, z) is the determinant of
the Jacobian matrix:

x o
ow 0z
¥ ¥
ow oz

where the entries are continuous.

Application of the Above

Let t, = ¢ - u and 1, =t + u. (This corresponds to a rotation of the axes
by 45° and a scale change of v/2.) The J (determinant) is determined:

a('l"z)_ ll -1

w1 ||=2
Thus,
Hence,

T por " AT p2T-1nyl
f f C(r—u)dtdu=(7)f f C(¢)) dr,dr,
-rJ-r “rdlar g
T 2T-113!
f dth(t.)f di,
-2T -2T+Itl|

t9

LT
=;f dr, C(¢)[2T - 11,1]
“Joar
2T
=f QT- 1, ) C@,) dr,
-2r
T
=j QT- 11 C(7) dr
-27

where f and 7 are dumimy variables.



Using this last result on Eq. (2.45) yields (dividing by a7®):
2T
o = (1 - —)Cm dr (2.47)

Equation (2.47) is true for the complex X(¢) as well; however, for the real
case, Eq. (2.47) further reduces to:

] 2T
2= ( - 3%) C(r) dr (2.48)
0

2.9 DEFINITION OF ERGODICITY

Let X(¢) be a stationary process and assume that:

T

. 1
lim 5T . x(t) dt

T—o
exists in the q.m. We say X(¢) is ergodic if:

T

. 1 q.m.
lim 3T x(Ddt = m (2.49)
T -T
That is,
I T 2
E 3T x(dt-m »>0,asT >0
-T

From Example 9, we have:

1 T
Eg=F Z_ff x(f)dt] =m
-T



and utilizing Eq. (2.48) the variance of ¢ is given by:

T LTI R o S 2Tn-’—'—')c d
KR Tk JrOamm ¢ =ap ) \ar) codr

(2.50)

Thus, it is obvious that X(r) is ergodic in the quadratic mean if and only if
(see the above equation) the following is satisfied:

2T
z_lff"(l-%) C(r)dr—>0,asT > Q@sn
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2.1

2.2

23

24

2.5

EXERCISES
Sketch a few samples of the process X(¢) given by:
X() = Asin (wr + O)

(a) If A is a random variable uniformly distributed over [-1,1].
(b) If w is random and uniformly distributed over [0,7].
(c) If © is random and uniformly distributed over (0,27).

Obtain the mean and the variance of each process in Problem 2.1.

Let the sample function process X(t) be given by:

x(¢) = a cos (wot +0)

Assume g is deterministic and @ is a value of the random variable ©,
where © is uniformly distributed over |0,7/2]. Find the mean, variance,
and the autocorrelation function of X(¢).

Let the sample functions of a process X(f) be given by:

x(t) = cos (wyt + 6)

where 8 is uniformly distributed over [0,27]. Obtain the p.d.f. of the
process, and comment on the stationarity of the process (in the wide
sense).

Let Z(t) = X(¢t) Y(t) be real processes. Assume that X(¢) and Y(t) are
independent stationary processes (wide sense); then:

(a) Obtain R (D= R x(‘r) R (7).

(b) If the processes P(r) = X(t) - m, and Q(r) = Y(¢) - m,, with the
corresponding

Rp(7) = exp (-al7l)



and

RQ('r) =exp (-blrl)

where a and b are both positive, then obtain R z(r).
2.6 Let X(r) be a widesense stationary random process with no periodic

components. Assume X(f) and X(¢ + 7) are uncorrelated as |7 be -omes
large. Show:

= 1l
R, (1) =m}

2.7 If X(t) and Y(r) are independent random wide-sense stationary processes
and Z(t) and WAr) are such that:

Z(t) = X(0) + Y(1), W(2) = 2X(1) + Y1)

Then find R 2(1), R (1), Ry, (7), and R, 2(1)

2.8 Consider the process X{(t) = I(1)Y, where i{t) is a deterministic compiex
function (non-random), and Y is a random variable. Assume that we have
a constraint on X(¢#) such that X(¢) is of mean zero and is wide-sense
stationary. Then perform the following:

(a) Determine the restriction on I(f).

(b) Obtain the most general form of {(t) that satisties the requirement.

29 A wrocess Y(t) satisfies:
Y+Y=X(0).1>0

where Y(0) = 2, my, = 1, and R, =1 +exp (-I7]). Find the following:
(@) m,,.

(b) RXY(tI . rz), for t and t, >0.

(c) RYY(t|.tz), for ¢, and f >0.

(d) Con.ment on the stationarity of Ryy.



2.10 Assume € (7) of the process X(¢) satisfies:

f 1€, (@) dr <o

Show that

1 T
lim 57 f R (r)dr = m?,
T—reo -T

2.11 Given the processes X(¢) and N(t) such that
X()=b + N(1)

where b is a constant, E(NV) = 0, and N is stationary, show thai if bis

given via
~ 17
b= Tf x(t) dt
0

it will satisfy
EG)=b

and

T
variance of b = }—f (I - I—;—‘) RN(T) dr

-T
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CHAPTER 3
POWER SPECTRUM OF
STATIONARY PROCESSES

Before discussing the power spectrum, which is defined for the wide-sense
stationary, we need to familiarize ourselves with some basic concepts and
definitions.

3.1 CLASSIFICATION OF SYSTEMS

Heuristically speaking, a system refers to a modeling of a physical phe-
nomenon (which is idealized in some sense). We shall visualize a system via a
black box which has many inputs and many outputs (vector input-output).

iNPUTS OUTPUTS

Ll
il

The input-output is often indicated symbolically by:
Y(¢) = L U@t) (3.1

where U(t) is a vector-valued input. Y(r) is a vector-valued output. and £ is an
“operator” relating the input to the output. The operator /. depends on the
particular physical _..udel.
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Deiiaition 1

We say the system is linear if the operator L is linear, ie., the following
conditions are satisfied:

Lal) =a L) (3.2)

where a is any scalar, and

LW, + U = LUy + LU, (3.3)

for any inputs U and U,. Equivalently. Egs. (3.2) and (3.3) can be combined
into one equation:

LaU, +BU)=al(U,)+B LU, (3.4)

for any pair of scalars a and 8.

In tnhe following examples assume the input. and the owtputs are one-
dimensional.

Example 1
Consider
wWry=et = L)

dt

We know L = J/dt and the conditions of linearity are satisfied.

Example 2

1) =u?(r does not correspond to a inear system since:

Llau (0 + Bun) = awu )+ Bu, (| ‘

# n I.(u|(l)) + BI,(u:(ln =a ui(l) + ﬁui(lb
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Example 3

Consider the electric circuit given below.

Let v(¢) be the input and i(r) be the output. Then, the output is given by:
i(r)= 1 (1) 3.5
Ik .

It is easy to verify that the system is linear.

Exainple 4

In the previous example change R to an inductor L and assume i(-<) = 0.
Then,

1 4
i(r) = Zl f ¥(A) dA (3.6)

and the system is also linear (left as an exercise).

Example §

Consider a svstem given by:
Y =au(®)+b

where @ # 0 and b # O are scalars. The system is nonlinear! This is true
because:

L(u,(t) + uz(f)) =al 1)+ “z(‘» +b#Lu () u, (1)

The system will b2come lirear it & = 0.



Definition 2
A system is called instantaneous if its output at any given t.ne ¢ is at most
a function of the input at the same time.

Definition 3
A system is called dynamic if it is not instantanzous. Example 3 is instan-
taneous and Example 4 is dynamic.

Definition 4
A system, whose output at time ¢ is completely determined from the input
in the closed interval {t - T, ], where T > 0, is said to have a memory 7.

Thus, if T7+#0, the system is dynamic, otherwise it is instantaneous. In
Example 4, the memory is infinite.

Definition §

A system is realizable or causal if its output y(r) does n>* depend on the
future value of the input. Thus, y{f) can be determined from the past (and
the present) information of u(}) (i.e., A<t and not on A >¢).

Definition 6
A dynamic system is said to be lumped if it can be characterized by a set
of differential equations for the continuous case (and difference equations for

the discrete case).

In the classical characterization of a linear system, any lumped linear sys-
tem (assume scalar inputs and vuiputs) can be represented by:

1) =f h(r,T) uir)dr 3.7)

where h(¢,7) = L 8(f - 1) = response to < unit impulse function applied at
time 7.

If the linear system is causal, then:

h(t.7)=0. for t>1 (3.8)
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Otherwise, y(¢) would depend on u(r) for 1 > ¢ (future value). Thus, it would
not be realizable. Hence, Eq. (3.7) for causal systems can be written as:

¢
= f h(e. ) u(r) dr 3.9

Definition 7
A system is time-invariant if the time translation of the input causes the
same time translation in the output. That is, if

y(0)=Lu()

then u(r - A) would correspond to (1 - A).

It is easy to verify in a linear time-invariant system that the impulse
response h(t, 7) = L(8(z - 7)) becomes:

h(t.7)=LO(t- 1)=h(t- 1) (3.10)

where h and & are two different functions.
Thus, the linear time-invariant system is entirely specified by a response to

a single unit impulse, which can be applied at any given time ¢. For the sake
of simplicity, we shall assume the time f=0. Hence,

h(t) = 1. u(r) 3.1

For a time-invariant linear system given by Eq. (3.7), one can write:

y(t)=f h(t - t)u(r) dr 3.12)

Equation (3.12) is of a well known form, called the “convolution integral,”
and it is denoted in the literature by h » u. We are going to talk more about
h = u in later sections.

Remark 1. Since the integral given by Eq. (3.12) is the limit of a summa-
tion (definition of Reimann integral), we can think of the output p(r) (signal)



to be resolved into unit impulses. For example, consider a finite interval
[-7, 7] and finite unit of pulses (steps) with width Ar occurring at r = kA7,
for k=0,t1,22,. . . 3N = T/Ar (see sketch).

- ~ yid

yi-ar)| yi0) | ylas)

| > ¢
-28r -Aor 0 ar 2ar 3ar

The summation
N
Y y(kAT)P, (¢ - kA7) Ar
k=-N

where P, (z - kAr) is a unit pulse with width Ar. The height of the unit
pulse is 1/Ar to make the pulse area equal to one. As Ar+0, N>, and
T - oo; then, if the limit of the above summation exists, it must be equal to
¥(t) given via Eq. (3.12), ie.,

f h(t - ) u(r) dr

Discussion

Physical systems are characterized by models consisting of idealized ele-
ments. Choosing an appropriate model which characterizes all features of the
physical system is very important and also very difficult. In g« 1. a model
of the physical system may be expressed mathematicall; integro-
differential equations and is generally nonlinear. The complete 1. _tment of
nonlinear systems is extremely (ifficult; therefore, we try to do the next best
thing: approximate the nonlinear system with 3 linear system.

The classical method of describing a linear system is by the impulse
e ponse method. Even though the solution of the linear model is known, its
treatment in the time domain for the time-varying case is not simple. If the
lincar model is time-invariant, we can use a transformation (such as Laplace or
Fourier) 10 convert the complicated integro-differential equations into simple
algebraic equations (frequency domain). It is of extreme importance to
emphasize that the transforms can be used to great advantage only in the



time-invariant linear systems. In the nonlinear and time-varying cases the trans-
forms cannot be utilized to advantage.

It is very easy to imagine a situation where we transmit a random process
X(¢) (signal) through 3 linear or a nonlinear system. However, if X(¢) is trans-
mitted thiough a time-invariant linear system, we shall use Fourier transforms
to simplify the calculations. The Fourier transform is also used for the decom-
position of signal power, which will be defined in the following sections.

3.2 FREQUENCY SPECTRA AND FOURIER
TRANSFORMS

Before developing the concept of the power spectrum of a stationary pro-
cess, let us give some intuitive discussion of Fourier transforms and series. If
the reader is not familiar with these concepts, he is advised to review Appen-
dices C and D. In this section, however, a relatively non-rigorous approach is
adopted for intuitive appeal only.

Let us start by asking ourselves the following question: Is there an input
signal which will pass through a time-invariant system without changing shape?
The answer is “yes” and is an exponential function exp (X¢), where A is, in
general, a complex constant. If we choose a special form of exp (Ar), namely.
exp (jwt), then the output y(f) would be proportional to the input, ie., y(¢)
= H(jw) exp (jwt), where H{jw) is the so-called “¢.'stem function.” Since the
characterization of the exponential functions of the general form exp (Af) (or
exp (jwor)) is very simple, it is desired to resolve any general function f(¢) in
terms of the exponentials whenever possible. Obviously, one such case is the
representation of a periodic signal £(¢) in terms of exp (jwt) (Fourier series).

A periodic signal f(¢) (not yet a random process) with a period T under a
set of conditions (Dirichlet, sce Appendix C) may be resolved into a series of
complex functions over [-77/2, 7/2]. The tesolution is given by:

@)=Y C, exp (nwyt) (3.13)

where w, = 2a/T, t € [-7/2.7/2], and the values of C, are given by:

T2
Cn = T f(t) exp (-inwot) dt (3.14)
-T2
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Recall in Eq. (3.14) that C, is, in general, complex and can be written as:

c, = IC'.I exp (iOu) (3.15)

where C, and 8, are functions of w = nw,.
The essential information about the harmonics in a periodic signal consists
of the magnitudes, phase angles, and frequencies. It is easy to see that all the
information about f(s) is incorporated in C, and w, = 2g/T, since once
these quantities are known, sc is f(£). The real amplitudes ICnl and the
phases §, can be represented graphically as a function of w = nwy, n=
0,£1,22,.... The collection of the graphs is called the frequency spectra
(discrete). Typical amplitude and phase spectra are shown in Fig. 1. It is easily
verified that IC_ | is an even function of w, and 0 is an odd function of w
(left as an exercise). The reader may verify for himself that, for real signals f{(r),

ICnO 40

|| l IO wo 3wo
&no-wo

_3:»0'0'3«.10 _ I|| » w
o “o

Fig. 3-1. Typical Phase and Ampliitude Spectra

3.2.1 The Fourier Transform

Now suppose that the function f(r) is defined over the infinite interval
(-°2°) ar.d that it is no longer -eriodic. Then it is still possible, under certain
conditions, to resolve the nonperiodic function into complex exponential
functions of the form exp (jwr). The intuitive argument is to reduce the
spacing w,, between the components of a periodic signal. Denote the spacing
by Aw = w, = 2a/T (radians per second). We shall continue to consider |C, !



as a discrete function of mwg. Since (see Eq. 3.14) IC | > 0as T~ o, we
shall define a new variable G(jnw,) = G(jinAw):

c
& a —n—_ =
G(jnAw) 8 2wl3n rc
As T — o0 and Aw - 0, nAw approaches a continuous variable « and:

G(w) = [ 1 (0) exp (-jet) dt (3.16)

and f(r) can be written as:

= C
- M - - . n .
f@= lim E Cn exp ([wot) = lim E exp (inAwt) Aw
Aw—0 n=-o Aw—0 p=-w —

2n

As Aw —» 0, nAw approaches a continuous variable w, such that

()= 2—'; G(w) exp (wr) dw (3.17)

Equations (3.16) and (3.17) are called the Fourier transform pair. Equation
(3.16) is, in general, a complex function of w. As an exercise the reader can
show that for real functions f(7):

F'(w) = A-w) (3.18)

Also, the reader will find it instructive to verify the transform pairs given in the
appendix on Fourier transforms.

If we use f = w/2x, and let P() = G(2nf), then

P(f) = G(2nf) =f 1(¢) exp (-f2aft) dt (3.19)



and

f@-= [ P(f) exp (2nft) df (3.20)

[ PUf) exp (2nfr) df = Zin f Gw) exp (fwhdw  (3.21)

Equations (3.19) and (3.20) are also called the Fourier transform pair.

3.3 POWER SPECTRA

We know that if G(w) corresponding to the nonperiodic function f(r)
exists, then we can verify (see Appendix C) that:

f LF ()2 dt = % j | Glw)! 2 dw (G.22)

holds (Parseval’s relation for Fourier transform).

Let f(¢). for example, represent the voltage across a resistance of 1 ohm.
Then the instantaneous power p(r) defined by p(r) = v(r) i(r), where v(1) is
the voltage and i(r) is the current through the resistance. Thus, the dissipated
energy in the resistance (which is the integral of p(f)) is given by:

f |v(:)|’d:=f If(t)lzdr=f iG(w)l";—‘: (3.23)

The average power P, is defined by:

im 1 [T

= 2

Pavirow 27_[ Lf ()12 de (3.24)
~T
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It is possible that total energy be infinite and the average power to be
finite. Note that |G(w)!? from Eq. (3.23) represents the density spectrum,
except for the constant 1/27.

Now let us consider X(¢) to be a real stationary random process. Define
X 1'(') such that

X(0), el €T
X 0= (3.25)
0, el >T

and let its Fourier be denoted by xT(w), ie.,

o0 T
xr(w) = f X T(r) exp (-jwt) dt = f X(t) exp (jwt) dt
~-o0 -T
(3.26)

We can see that, as T = o, the signal XT(t) - X(¢). Utilizing Eq. (3.24), the
average power of X(¢) for ¢t € [-T,T] is given by:

1 7 Y s 7 L
ﬁ[rlx(t)l dt-[ =T 2

where from Eq. (3.23), I)(,.(o--)!2 (\2T) represents the power spectral density.
However, the power spec rum &:-.) of X(¢) is defined as:

. 1
S(w) = Thm 57 Ellx ()] | (3.27)
Now S(w). by utilizing Eqs. (3.26) and (3.27), becomes:

S(w)= lim 517.5 x(w) X;-(w)]

T+o0

I T T
lim -2—7-:15 I- f X(t) exp (-jwt) dr] [ f X(1) exp (jwi) dt]
T LJ-r -T

Al



The above equation can also be written as:

T AT
S(w) = lim 2]_7'[_[ f R, (t- u) exp jlt - u)) dt du]
T—w -rd-T

where, from Example 9 of Chapter 2, we get:

Ky = lim i - ITI s d
(w) = R, () 37 exp (-jwr) dr

T—oc 27T

=j RX(‘r) exp (-jwr) dr (3.28)

Thus, for a stationary process, S(w) is the Fourier transform of R, (7):

R X('r) = 21—1r f St exp (juwr) dw 3.29)

For a real process X(t). R x('r) = R, (-7). Eq. (3.29) becomes:

RX(T) = 5‘;{[ S() {ros wr +jsin wr] dw

L
—2"—,:” S(w) cos wr dw

3|

f S(w) cos wr dw (3.30)
0

72



Definition 8

The power spectrum of any stationary random process X(r) (real or com-
plex) is denoted by S(w) and is given Ly:

S(w) = f R(7) exp (-jwr) dT

where R(7) is related to S(w) by Eq. (3.29) for the general complex case,
where Eq. (3.30) corresponds to the real case.

3.3.1 Examples

Before getting involved with the examples, a method of calculation for the
bilateral Laplace transform is discussed. Assume the bilateral Laplace trans-
form F B(s) of f(t) exists in some region, say, for o, < Res <o,. Then,

Fg(s) = f £(0) exp (-st) dt

(1] oo
=f F(D)exp (-st)dt +f f(8) exp (-st) dt
—e 0

f fGD)exp [-(-s) 1] dt + f f(2) exp (-st) dt
0 0

.3 U(-’)] (replace s by -s) + “Tlf(')l

where Zis the one-sided Laplace transform.

Example 6
Find F,(s) of (1) = = exp (- 111).
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Solution
Fort> 0,

f@=Texp c0)

Hence,

L ()] =F(s)=;¥_£],for Res < -1

Now, for ¢t <0,

exp (¢)

t | e

fl=

which implies that:

1/2

(replace s by -s) +
P § (replace s by -s)

Ll (-0 =1’[—3; exp (- t)]

il

12

:S+l.fochs>l.

FB(S) =‘(/)lf(-t)]l (replace ¢ by -5) + (/)'f(')]

22

TS5+l s+ |- 52

and the region of convergence is -1 < Res < 1.
Remark 2. The Fourier transform #(w) of £ (1) is obtained by replacing s
by jw. Hence, H#(w) = 1/(1 + w?). -

Example 7

Given :he stochastic differenti. equation:

*=-x(t) + u(r)
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VIS AUy T U anua £ U T)| = 0l - T), the solution of x{:) is given by:

t
x(1) = x(0) +f exp [-(t - 2] u(D) d)
0

t
=f exp [-(z - N)] u(X) dx
0

and

13

t 147
E[x(t)x(t + 7))= E{f exp [-(7- )] u()\)d?\f exp [t +7- ) u(g)d*(
0

o .

- j f exp [~(2r +7- £ - N Elu(\) u()] o\ dk

t T
= f [ exp [-Q2r+1- £- N 8¢k - \)d\at
( (1]

t
=f exp [-(2 +7- 20)] df =Lexp - + 1)) exp (29]
, 2

t

0

exp(-7)-exp -2+ 7)].if720

to| =

Now, as 1 - o,

R, (1) = E{X(t) X1 + 1)} = % exp(-7). foral 7 20
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R, (1) =%exr) (r)

R, (7) =%exp (=17}), forall 7

To obtain § x(“’)’ we can either use Example 6 ar the direct definition of
the Fourier transform. Thus,

Sylw) = Lf exp (-7l exp (-jwr) dr

2 1
W] Wi

Suppose S, (w) of 4 process X(7) is given by:

taf—

Example 8

S (w)=
o w?+l

Find R (1) by the Theory of Residues.

Before completiny this example, let us give an informal discussion of the
inversion forniula.

Let /(1) be a given furction such that its Fourier transform .#(w) exists.
Then, for a fixed positive 0> 0, the Fourier transform of exp (-ot) f(¢) also
exists and is given by:

f F) exp (-at) exp (-jwt) di = [ fexp [-(o 94 jw) i} di
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Derote the integral as Flo + jc ). Thus, f(f) exp (-ot) is given by:
f@ exp (-o1) = F ' [Fo + jw)]

:% f Ro + jw) exp (jwt) dw

Multiplying both siles by exy (or) (v is constant), we ge::

. 1 [~

J(= -2-;f o + jw) exp [(0 +jw) t] dw
K“akmg the change ~~  vble 5 = 0 + jw, w obtain:

l ao’-
fl= 2—']']‘ f ) eip (st)ds
o f=

resrdues of F B(s) exp (st) at
singularities to left of line
chosen, forr 20

residues of F B(:) exp (st) at

-} singutarities to right of line
chosen. for <0

The equivalent bilateral transtorm correspondirg to §,(w) is denoted by
S,(s) and is obtained from §, {w) by substituting w = s/;

Now applying the inversion formua to Exampie 8:

! LI B
2, s-M)ts+ 1)

SBGS) =S(s)j) =



where SB(J) exists for -1 < Re s < 1. Now,
| +joo
R(r) = ﬁf SB(s) exp (sr) ds, where -1 << <1
c—joo

Z residues of S_(s) exp (s7) at
poles of S (s). forr 20

_Z residues of S_(s) exp {s7) at
poles of Ss(s , forT <0

=1(1 +s)exp (s7) =-_l )
-y | S aeetD

L A JduTr=0

1

_cls- Dexp ts7)| - exp bs7)
(s- INL +5) LF‘ 1 +5 5=

= e_.gp:r) dorr <0

exp(-!7l) ¥ 1

[T

Example 9
If Stw) is a power spectruin of a given process. show that LSidu? i ot

2 power spectrum.
Solution

Stw) =f Rury exp t-jwr) dr



which implies:

2 0
ig?=j.kﬂmmewkMﬂmg3?#mm
dw e

Now, if d*S{w)/dw? is a power spectrum, we must have [-72R(r)] as an
autocorrelaticn function. Let G(r) = -fIR(r). If G(7) is an autocorrelation, then
we would always have:

1G(7)l < G(0), for all T
However, G(0) = 0 and
0 =0G{r) < GO)

cannot be always satisfied.

Example 10

X(1) = cos (wyt + 0). 8 € [0.27]. is uniformly distributed. Find S, (w).

Solution
From Example 6. Chapter 2:

R(T)=EX(1) X(t + 1) =% Cos w7

195

Bl - wg) + 3w + w)))

= g5 -
S.‘(w) —.?{3- cos wor} =

_ =z
X(2my

[8(F - 1)+ 5(F + €]

(5(F - fob +8(f+ l'o): 2 fo = w,

|
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Example 11
In Example 8 of Chapter 2, the autocorrelation function R(7) was given

by:
{l- Irl, Il <1
0. Il > 1
Find § ().

Selution

- 1
Sx(w)=f (1-irl)exp (—;m)dr=f (1 - l7l) exp (-jwr) dr
—oo -1

)
=2] (1 - 1)cos wrdr
°

3.4 MAJOR RESULT

In what follows. we shall show that a function R(7r) which has a Fourier
transform S(w) is an autocorrelation function of a stationary random process
X(t) if and only if S(w) #0 for all w. where X(*) is continuous in the
quadratic mean (q.m.). In order to prove this major result. we need to prove
some important results given by Theorems | and 2. which will appear in the
sequel. We shall assume X(+) is continuous in the q.m. unless specified other-
wise.



Theorem 1 (Bochner's Theorem)
The function R(7) is an autocorrelation function of a stationary process
X(¢) if and only if R(7) is nonnegative definite.

We have already shown that if R(r) is an autocorrelation function, then it
is nonnegative aefinite, since for any collections of ¢ , ¢
complex parameters a, . @, .

yo- - 1, (time) and
...a":

Z R(t'. -1) a’.a; =

‘1.2 X))o
k=1 i=1

However, the converse is more complicated and will not be proven here. (For
the proof, see Gnedenko, Theory of Probability, Chelsea publication, 1962.)

Theorem 2

2
20 3.31)

A function R(r) with the corresponding S{(w) is nonnegative definite (auto-
correlation) if and only if it cz . be represented by:

R(1) = 2'—“ f exp (jwr) S(w) dw

where S{w) is never negative (ie., S(w) = 0, for all w).
The proof is relatively complicated ~1d will be eliminated here; for a proof
see the same reference shown in Theoreta 1.

As a special case of the Fourier transform pair R(7) and S(w). we have:

S(0) =f R(7) dr (3.32)

and

R(O)=3';f S(w) dw =f S(w) ‘;‘1‘_’ (3.33)
(1]



and R(0) is the average power by definition, ie.,

R(0) = E[) X(1)1 %)
Definition 9

A stationary process X{(7) whose power spectrum S(w) is constant for ah w
is called a white-noise process. If S(w) = W, = constant, we obtain:

R(7) = -il; f W, exp (jwr) dw = W, (1) (3.34)

Hence R(0), which is the average power, becomes infinite at 7 = Q. Thus, we
conclude that the white noise process is a niathematical function that is very
useful in practical applications. For example, it is convenient to utilize white
noise as an approximation to an actual process whose power spectrum is flat
(constant) over a freuency band.

In application problems such as those that vecur in control and communi-
cation, we are faced with physical noise sources which are added to the signal
as a lump sum. The power spectrum of the overall noise is essentially flat up
to frequencies much higher than thuse that are significant for the signal and
the system.

3.5 INPUT-OJTPUT RELATIONS

Very often we confront i situation where we pass a stationary precess X(7)
through a time-invariant sy: em, and are interested in determining the output
(along with its statistics).

Consider the (bounded) sample function X(f) from the ensemble {X(r)}
which is applied to a time-invariant system with impulse response h(t) (see
sketch) and the output Y{1).

We know Y(/) can be written as:

Xte) vie)

ﬂ »le) ——

m)=f h(A) X(r- \)d\ (3.35)



Now let us find Ry(r).

From Eq. (3.35), we have:
Y(e +‘r)=f h(u) X(t + 7 - u)du

Thus, R(7) = E{Y(¢) Y(¢ + 7)] can be written as:

R(f)=E[f h()\)X(l-)\)dkf h(u)X(t+'r-u)du]

(3.36)
Rewriting Eq. (3.36) and taking the expectation inside yields:

R (M) =E()yt+ 7)) =f f hQ\) h(u) E[X(t - M) X(¢t + 7- u)] d\du

=f j h()\)h(u)Rx(r+)\- u) d\ du

=h(-1) » A1) = Rx(f) (337N
Now if §(w), H(w), and S, (w) exist, we can apply the Fourier transform to
Eq.(3.37) to get:
Sy(w) =HFln( o - F{h(2)} ~.F{Rx(r)}
= H' (W) Hw) S, (@) = 1HW)? S, (w) (3.38)
which is an important relationship yielding Sy(w) in terms of § (W) and the

system transfer function H(w).

Remark 3. From Eq. (3.37) it is obvious that Zy(r) y(t + 7)] is a func
tion of 7 alone, and also due to stationarity of X(s). EX(t)= m = constant.



which implies £Y(¢) is also constant (see Eq. 3.35). Hence. Y(r) is stationary
(wide sense).

Remark 4.

R,(0) = E[1Y()1?) =5';f § (@) deo

=§';[ |HG) ? S (o) dw

3.39)

Remark 5. The results are also true for the complex stochastic processes.

3.6 INPUT-OUTPUT OF MULTIPLE TERMINALS

Suppose we have two time-invariant systems characterized by their impulse
responses /i, (+) and h,(*), respectively (see sketch):

X, 0 v,l0 X ) vole)
ﬁ h 1 () ﬁ ——— hzlt) re——

(a) (o)

where X () and X, (r) are sample functions from {X(1)}. which as before is
assumed to be a stationary ensemble.

let us caicuiate Ry y,(7). As befcre Y, (¢) and Yz(t) can he written as:

Ylft)=f h, () A" (- N) dA (3.40)

Yz(t)-‘f h, @) Xz(l- u) du (3.41)
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and a simple calculation (similar to the previous case) of Ry, y,(r) would
lead to:

Ry vy D=EY, () Y, (e + 1)

=E[f h, Q) X, (- k)d)\f hy) X, (¢ + 7 - u)du]

=f f B A @) Ry (74X~ ) d\ du (342)

where Ry, x,(r) is the cross-correlation of X,(f) and X,(¢). Hence, once
again:

Ry y, @ =hCD)xhy() o Ry x () (343)

Thus, assuming that the appropriate Fourier transforms exist, we obtain:

Syl yz(w) = H (-w) H,(w) S)\,| xz(w)
= H (W) Hy(w) 5y x, ) (3.44)

which is a very general result, relating the input spectrum of Ry, x,(r) to the
output spectrum Sy, y,(w).

Note that as a special case of Eq. (3.44), if we let X, = X, andh = h,
(which implies ¥, =Y,). we obtain Eq.(3.38). Note that Eq. (3.44) is also
true for complex processes.

Remark 6. Th reader may verify for himself that if X (1) and X, (1) are
uncorrelated, so .o Y](I) and Yzif).
Discussion

In applications. Ill(w\ and Hz(w) very often have finite bandwidths. i.e.,
Hl(w) = 0 for some Wy such that |wl 2w, and, similarly, Ilz(w) =0 for



some w, such that lwl > w,. It is obvious that if H\ (w) and H,(w) have
nonoverapping spectra, then

H(wH,(w)=0
which would yield:
SY| yz(w) =0
or
RyI Yz(ﬂ =0

In that case, the processes Y, () and Y,(r) would be orthogonal.

A very important consequence of the above is that if X(r) is transnitted
through an ideal filter, i.e.,

Ay, for lwl <w,
IH(wW)! =

0, otherwise

then the output signal Y{s) and the signal suppressed by the filter would be
orthogonal. That 1s, if X(¢) has a frequency conten: beyord w,,, it is going to
be suppressed by H(w) and the suppressed portion is orthogonal to Y(r).

Example 12

A white-noise voltage source X(f) with power spectrum §,(w) = K is
applied to an RLC network (see sketch). Assuming that the system (circuit) is
at rest at =0 (ro transients), determine S, (w).

H n

+

Xt \WF= T Yin
o -




Solution

Hiwy=—19¢ -

] 1
+ + — + jw + —
R +jwl joC 1 +jw F

We know that:

S, (w) = [Hw)!1? S, (w) = |Hw))? K,

H(w) can be calculated from the above as follows:

e
m(w)l2=:-’—“’—-i- =
jor - = l+(w——)
A
S lw) = o’ K, = 0

3.7 SAMPLING THECREM

The sampling theorem (duce to C. E. Shannon*) is very important and has
produced some unexpected recults, The utilization of this theorem is prevalent
in control and communication theory. It must be emphasized that the sam-
pling theorem, whether we are dealing with deterministic or stochastic signals.
will oply hold for band-limited signals, that is, signals whose Fourier trans-
forms are identically zero beyond a finite band of frequencies. In order to
develop this concept, we shall first deal with a signal X(¢), which is deter-
ministic. T. h¢ more precise, we shall state the .1eorem.

Theorem 3
Given a deterministic signal X(r) whose Fourier transform .2(w) is zero
beyond |wl > w, rad/s (see sketch):

Aw)=0, foral lwl > w,

*C. E. Shannon, “Communication in Presence of Noise,” Proc. IRE, Jan. 1947,
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1

s
/ .
! i
3 | > w
-wc uc

Then X(¢) can be completely and uniquely recovered by its values sampled at
uniform intervals of T = u/wc seconds (or smaller), an< it is given by:

i sin [wc(r - nT)
XM=Y, X@T) ol (3.45)

Proof

There are several ways of proving this important theorem, but we shall give
the simplest proof.

From the inverse Fourier transform, we obtain:
o0 w(‘
1
X)) = -z;f A (w) exp (jwt) dw = %f A (w) exp (jwt) dw (3.46)
- 00 _w
<

Now, assu:te that 2 (w) is a part of a periodic function 2 *(w) (see sketch),
such that:

) =2w), iflwl <w,

R




Hence, for lw! < w, (see Appendix D).

AMw) = Z b, exp (jnwT)

n=—oco
where
9.
T= "'" =T
W, w,
and b, is given by.
W
l- c
b, = 2—"f 21(w) exe (-jnwT) dw
-Ww

c

If we substitute ¢ = - nT in Eq. (3.46), we obtain:

-
X-nT) = ;];f P(w)exp (-inwT) dw
-w
c

(%) [ Alw) exp (-jnw?) dw

(3.47)

(3.48)

Now. utilizing the definiticn of b, fiom Eq. (3.48). we get from the above

equa"o"-
.X( "] ’ - 'T_b

or, equivalently,

b =TXi-nT)
n



Using the above in Eq. (3.47) yields:

AW~ T z X(nT) exp (-/nwT) (3.49)

Now, if we substitute Eq. (3.49) into Eq. (3.46, we obtain:

w
c

X(r) = Z X(nT) ,—77; exp [jwir - nTY dw

n=-oo W
(4

hd sin ‘lw((l' aT))

T XD G gy E

¢

PERE

which is exactly the result we are after.
Remark 7. If we substitute T = 1.',/(4)0. then

. nm
sin [w (¢ - nD)] sin I:wr (' :\()1 sin (w1 - nm)

n C Aw, - nm)

w(t-nD) " (,_ M)

¢

(3.51)

Remark 8. 7he function

sin [w (6 - nT)}  sin (w 1 - nm)

w(‘(r' Y 7(«.)(‘! - nm)

is an “‘interpolation function™ which is multipiied by X(x#T) and 15 summed
wver all « to yield X(r).

Now we shall discus the cas where X(r) 15 a stochastic process. We will
show that the result given by Eq. (3.51) helds for the stedhastic case in the
quadratic mewx (q. n.). That is,

sin (x> 1 - nm)

qm.
X =Y X o £ n7)
n- o= ¢



. oq.isalantly,

| -~ n(ut Ax)
e{lm)- Y xan - | (3:52)

Before « uplcting the poof, we shal” ».cuss some properties concerning
the petio” .+ of XVt) ano "x(t).lnv*lfalm,xmnmmbe
widesense « wnary vnless syecified otherwise.

m_‘

ln Appc.dix D we discuss the periodicity of the determnistic signals and
m:--ﬁMmawL,n&mMIIht
spanned .y the set

{exp Gmoogt 1], __
For stochastic signals we shall modify Appeadix D. If we change the norm

T2
e=¢n= f (@2 de

-T/2

in the appendix for the deterministic case to:

KX =X, X)=E[IX(0)1%]
ﬁw&gstochasﬁcme.aﬂofdnmﬂuwiﬂhdd.m,mewmfwﬂn
stochastic case is the quadratic mean or the mean square. Now if a stochastic

process X\¢) is periodic (almost everywhere and not in the quadrati: raean as
yet), ie.,

X()= Xt + T) = X(¢ + uD)

Then it is very easy to verify that Rx(f)isalsoperiodic,sime

Ry()=EX(t+ ) X" () =E[X(t + 1 +nT) X'(@)] = R, (v +nD)
(3.53)

rv



Hence, the periodicity of X\r) implies the periodicity of R, (r). However, if
R, (7) is perivdic with the period T, ic.,

Rx(r +D= Rx(f)

then (left as an exercise), it can be shown that X{¢#) is periodic in the quadra-
tic mean and can be expanded into a Fourier sevies:

x\e) - 2 a, exp (p‘nw.t). wy = 2—; (3.54)

.I—-
where «_'s are the usual Fourier coeflicients and are pairwise orthogenal. i.c..
Ela a_ ] =0, fordin#m

We can abso write R(r) by a Fourier series given by:

— "
Rx(f) = 2 C. exp (inwol). Wy = :1—’5- 3.5y)

where the C_'s are again the Fourier cocfficients. and the a;'s and the C's are
related via:

Py 2
C, =Ella 1%

Now, if we use the Fourier transform on Rx(r). we get:

S @)=21 Y0 C, 3w - nw,) (3.56)



3.7.1 Application of Sampling Theorem
to Autocorrelation Functions
Let as assume that lhemlmrdnﬁmfucﬁmkx(r)hsawu
spectrum S, (w). Application of Eq. (3.45) would give rise to:

m(ut nx)

R x(‘l‘) = 2 R X(.n (—r—_—.T 3.57)

it would be casy to verify that if A\(r) is a band-limited stochastic process,
thea

sin (w t- nx)
Y xen—od

(w1 - nr) (3.58)

The following proof is from reference [1]). To prove Eq. (3.58), we show:

sin (w - nx)
[ X@) - X(nT) — ) X(mﬂ]

(w, ! - nw)

- a ( -
= R(t- mT)- 2 R(T - mn_’i._‘.d_"____"_'_)

(w,- nx) =0 (3.59

where it is left to the reader to verify that:

= in (w - nx)
- 5 - T

which is shown by substituting ¢ - mT for 7 in Eq. (3.57).

Now, utilizing the identity

- sin Iwc(r + mT) - nal
R®)= ), R(@T- mD) @ ¥ e




(where this identity is proven by changing ¢ - mT to ¢ in the preceding
equation). we now get:

. d sin (w_t - n7)
E{xo- ..2 YD o Y0 70 (3.60)

Thus. utilizing Egs. (3.59) and (3.60), it is easy to show that:

[ - sin (w ¢ - nmd\°
‘. -
E (X(l) - 2. :. Xin "(u;' _ mr"“—) =

- -

- sin (wrr - nw)
E (xm - _Z X(nDD —"—d-ci_ ’mi—-) x| -

e «

[ = sin “"c' - nx) )
ARG ‘:Y_‘_ X(nD »wc' . ).\m =0-0=0

3.8 SUMMARY OF SOME USEFUL RESULTS

In what follows, we shall summarize some significant properties concerning
complex stationary (wide-sense) processes X(z7). Y(e). and Z(0).

- F 2
(1) R (0) = EPLXDI 7).
(D) R AT =R (7).
If X1s a real process, then

R )= R",i-r)
(3) i Z() = X(r) + Y1) then
Rllr) = R‘,h’) + R,.(r) + R.‘. gt R”.h')

where R;.,lr) = R,.l\.i-r)

) FHXUE+ 1) - X =2 Re [RO) - R(n)
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(5) Assume R (r) is not periodic, then

lim
I7] = o0

Ry(r)= imi?

where m = E[X] and if X(¢) and X(z + 1) are uncorrelated as |7| = oo
Thus, if E[X(r)] = 0. then

lim -
- a oo Ryl =0

6) RXQO) P |Rx(f)| . for all 7.

(7) R(*) is an autocorrelation function iff it is nonnegative definite.

(8) R(-)is an autocorrelation function ifY its Fourier hiansfonn S(w) 2 0, for
all .

(9) If X() is the input of a time-invariant system with the transfer func-
tion H(w). then the power spectrum of the output Y(r) is given by:

S lw) = | H(w)t? 5, (w)

3.9 IDEAL LOW-PASS SIGNALS
We shall define X(7) to be an ideal low-pass process if S,(w) is given by:

K,. for lwl < w
<

S,lw) =

0. cthenwise

Invoking the inverse Fourier transform, one obtains:

w T
c

- 1 “e sin w1
R (n)=4"" Sxlw) =5~ Syw)exp fwrlde =K - =
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Now let us show R x(f) as 7 ~ 0 (we shall denote R x(r). r—+0,a R X(O)).
Using L’Hospital’s rule on the ab. ve equation, we get:

d
) _ Csnwr o0 E(smwr)
lin R (1) =1lim K ot 0 K, lim =K
o —0 =0 {wr)
Hence, we can write:
sin w.T
R(1) = R(O) ——— (3.61)

c

From the above equation it is easy to verify that R(nT) = 0 for all n # 0. We
can also show that X(nT) processes are mutually orthogonal. This is true
since

E[X(nT) X(nT)] = R, [(n -~ m)T] = 0. forall n #m

Now we shall summarize a significant result via the following (heorem:

Theorem 4

A band-limited process X(t) is low pass iff X(nT) are mutually orthogonal.

Proof

We have shown that if X(-) is low-pass (characterized by Eq. 3.61), then
X(nT) are mutually orthogonal. If the processes X(n7) are mutually ortho-
gonal, all we need to show is Eq. (3.61). Now R, (nT) by definition is given
by*

RX(nT) = E[X(nT) X(0)] =0. forall n #0

because of orthogonality. Invoking the sampling theorem (see Eq. 3.57). we
get:

sin (w7 - nn)

R(r) = g R(nT) _(‘;".TA:T'}‘) -

sinw T sinw T
(o [y

=...+0+0+...R(0)»-;’-~T‘ +0+0...=R(O)——

T
[y w(‘



3.10 REPRZSENTATION OF BAND-PASS PROCESSES
A signal X(¢) whose power spectrum is defined only over a band

- +
W, wc<|wl <wy tw,

and is zero outside the band (see sketch) is called a band-pass process. Note
that the power spectrum S, (w) is defined only for stationary processes. We
observe that the band-pass corresponding to the stationary process X(¢) is 2w c
and is centered at w = w,,.

s x(u)
2w
m 11 wirad/s)
“Womw, ~w, ‘Uo"‘wc wo-we W, wotw, c

In what follows we shall show that a band-pass process consists of two
components, given by:

X(t) = X, (1) cos wr + Xz(t) sin wt (3.62)

where X (¢) and X,(¢) are stationary (wide sense). and Sy (w) = Sy,(w). In
addition, these power spectrums are shown to be related to S,(w) by the
equation:

S (wt wo)+Sx(w- w ) for lwl <wc
SX|(w)=SX2(w)=

0, - for lwl >wc

(3.63)
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We can also show that Sy, x,(w) and Sx, x,(w) are related by:

H8x(w = wy) - Sylw + wy)], for lwl <w,
M =-5 (w)=
xlxz(“’) X, X, )
0, for lwl >w,

(3.64)

Note that Sy, x,(¢5) is not necessarily nonnegative because R X x,(7) is not
necessarily nonnegatve definite. Furthermore, as a consequence of Eq. (3.51)
it can be shown that:

EIX@0)\? = ElX (012 = E1 X, (012 (3.65)

Summarizing the above via a theorem is now appropriate.

Theorem 5

X(1) is a band-pass process (implies X(¢) is stationary) with the correspond-
ing S,(w) given above (also see accompanying sketch) iff X(s) can be
described in Eq. (3.62) and Egs. (3.63) and (3.64) are satisfied.

Proof
Let Z(t) be a random variable such that S, (w) =4 S5,(w) and be zero for
w<0,ie.,
5,(w) =48 (w) I(w) (3.66)

where 1(+) denotes the unit step. From Eq. (3.66), we can model Z(¢t) as the
output of a linear system, with the input X(¢) and the transfer function
H,(w) given by:

H (w) =2 I(w) (3.67)

It is easy to observe that:

2Hw)=1+sgm w
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where

1, w>0
sgn w =

-1, w<o0
Thus, Z(f) can be modeled by an alternate approach, i.e.,
2(6) = X(1) + jX(0) (3.68)

where X(¢) is defined by using X(r) as the input of a linear system with a
conesponding transfer function H(w) given by:

H(w) =-jsgn w, ie., A(r) = ;]’- (3.69)

Hence.

T X,
X(t)—[”h(l T)X(T)dr—nfwt-'rdf-m*Xm

(3.70)

We define )?(r) given by Eq. (3.70) as the Hilbert transform of X(r). The
process Z(r) is called the analytic signal associated with X(¢). It is useful to
observe that if X(7) is the input with the transfer function H(w) = - sgn w,
then the output is X(r) because:

(H(W)? = (-j sgn w)? = -1 3.71)
From Eq. (3.71), we can verify | H(w)!? = 1 and

Sf(w) = Sx(w) and R?(r) = RX(T) (3.72)



Let )? denote the output of a system with the input )T’(t) and the transfer

function H(w) = -j sgn w; then it is easy to verify that:

Xy =-x@) (3.73)
Hence, for the processes X(r), X(»), and )?(t), their behavior can be sum-
marized as:
Xt Xie) ¥ o
ol Hlw) = ~f 3gn W P Hiw)=~jsgn w Xl = -Xle}

Now, utilizing the facts that:

5, 5(W) =8, (@) H' (w) = j sgn w 5, (w)
and
Sfx(w) = Sxx H(w) = -j sgn w Sx(w)
then
Syyplw) = -Sfx(w)
and

Ry (1) =Ry, (7)
Now we shall consider the process Z(¢) exp (—iwot). and let
Z(r) exp (-jwyt) = X (1) - j X, ()
That is,

X,(0) = Re [Z(1) exp (-jw )] = X(1) cos wyt + X(e) sin w
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Xz(l) = Im [2(¢) exp (—jwot)] = X(¢) sin wy! - X(r) cos wyt

(3.80)

from which we can obtain:
X(D) = X, () cos wt + X, (1) sin w,t (3.81)
X() = X () sin wt - X, cos wt (3.82)

From Eqgs. (3.79) and (3.80), we obtain:

EIX. ¢+ 1) X (1) =% {[Ry (1) + R (1)} cos wt

+[R X }('r) - Ry x(r)] sin w,T

+ [R,(7) - R}(T)] cos wy (2t + 1)

+ IRX“{(T) + R;x(r)] sin w (21 + 1)}

Now if we use Eqgs. (3.72) and (3.77) in the above, we obtain-
Rx'(r) = R.‘: cos w7 + Rx.;('(") (3.83)
which is stationary. and, similarly,

sz(r) =R, cos Wyt + Rx:v'(?) sin w, T (3.84)

which implies:

Ry (M =Ry () (3.85)
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Now, Sy, (w) can be obtained from (3.83) by:

le(w) =—;— [Sx(w + wo) + Sx(w - wo)]

+% [Sy(w + wg) sgn (w + wy) - Sy(w - wg) sen (w - w)]
(3.86)

Let § (w) denote Sx(w) where we translate Sx(w) from its center at w, to
the zero frequency. It can be verified that:

Sx(‘" twg)= Sq(w) + Sq(-w - 2w,) 3.87)
Sylw- “’o) = Sq(-wo) + Sq(w = 2w,) (3.88)
substituting (3.87) and (3.88) into (3.86) yields:
SXl (w)= Sq(w) + Sq(—w) (3.89)
and, further, it can t.e shown that:

Sylw + Wt S, (w=-w)) lwl <w
le(w) =5, w)+ Sq(-w) =
(3.90)
where W is width of the band-pass.
From Eq. (3.85), we also have:
le(w) = sz(w)
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Hence, we have shown (see Eq. 3.90) that X . (¢) and Xz(’) are low-pass pro-
cesses.

To find Rx , x,(7), which is equal to -Rx, x (7). we use Egs. (3.79) and
(3.80) to obtain:

RX|X2(T) = -szx‘('r) =R, (r) sin w7 - R, 3(7) cos w7

and

lexz(‘*’) = 'Sx2x|(w) 2j[S,-w) - S, (w)]

’j[Sx(w- wys = Sylw +wo)]. fwl < W
0, lwl > W

(391)

1t is easy to verify that:
E(X, (1% = EQ X,
because Sy (w) = Sy ,(w). Similarly, it is easy to verify that:
ENX(0i%) = E0X (D1%)  A1X,(017%)

The representation given by (3.81) and (3.82) of X(r) and f(t) is known as
the quadrature component representations.
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3.} In an RC circuit, where R = 1 2 and C = I F, let the input voltage source
be 1 random process X(¢) such that §,(w) = K, and the output be the
voltage across the capacitor denoted by Y(¢). Then:

(2) Show the trensfer function H{jw) is givea by:

1
1tjw

H{jw) =

®) Obtain §(w)

() If R, (r) = m%. find the mean and the variance of Y(r).

(d) Obtain the variance of Y(f) and comment on your result as | 7] —oco.

3.2 Let Y{(r) be a process given by:

YO =X+ 1)-X¢-1)

where X(t) is a zero mean stationary random variable. Show that:
Sy(w) = 4Sx sin® @

3.3 Determine the correlation function of the white noise S(w) given by:

A, w < |l <w,
S(w) =

0, otherwise
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3.4 Repeat the previous problem for:

S lwl L w,
Sw) =
0, otherwise

3.5 Determine the correlstion function of the process X(r) with its power
spectrum given by:

Sw) =

@+ o)

3.6 In Problem 2.9, obtain Sx(w) and Sy(w).

3.7 Tbe input X{¢#) to a linear time-invariant system has the cormelation func-
tion Rx(r) = §(r). Assume the output i8 ¥(¢). Then find R, (7) and
R, (7) 83 well as their corresponding power spectrums, given:

(a) h(s) = 1, given 0 < ¢t < T and zero otherwise.
®) k(®)=texp (-21), ¢t > 0.
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CHAPTER 4
ESTIMATION THEORY

4.1 INTRODUCTION

Heuristically speaking, stochastic estimation is the operation of assigning a
value to an unknown parameter based on contaminated (noisy) observations
or measurements involving some function of the parameter. The noise con-
taminating the uncontaminated signal is assumed to have known statistical
properties. The assigned value is caliled an estimate and the system or func-
tions yielding the estimate is called the estimator. In many applications it is
meaningful to assign a cost to an estimate representing a quantitative measure
of how “good™ an estimate is. This cost function should be a function of
estimation errors, 1.€., the difference between the true value and the estimated
value. An optimal estimate is a function of received observations (measure-
ments) which is chosen to minimize the expected value of the cost function.
An estimator yielding such an optimal estimate is called a Bayes estimator. A
basic feature of the Bayes estimator is that it requires a knowledge of an 4
priori probability density function.

The present-day theories of estimation in the time domain, with few
exceptions, owe their creation to Wiener and Kolmogrov. They basically
considered the problem of “‘optimal™ separation of a signal s(f) which was
contaminated by additive noise n(f). W~ denote the contaminated signal Y(r)
and call it observation, i.e.,

Y(t) = s(t) + n(r)

We shall use the same notation for the signal whether it is a process or
ensemble throughout this chapter.
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Wiener studied the continuous-time problems and assumed that s(¢) and
n{t) were typical numbers drawn from ensembles of those functions which
were widc-sense stationary with known first two moments. In addition, he
assumed the avallability of a semi-infinite observation and solved the problem
of linear least square estimation, reducing it to the problem of solving a very
difficult integral equation, the so-called “Wiener Hopf equation.” That is, the
optimal solution by Wiener’s method would terminate with an integral equa-
tion whose solution would be needed to optimally separate sfr) from the
noise.

Even if one is willing to accept physically that the signal and noise be
stationary and the observation be given over a semi-infinite interval, there
remsins a major problem: computation of optimal solutions which utilizes the
“Wiener-Hopf integral equation,” where its solution with the exception of
some academic problems is extremely complicated and computationally infea-
sible. The statistical assumptions are also very stringent, which further limits
the applicability to many practical problems such as those in orbital mechan-
ics, space tracking, and countless others.

Kalman and Bucy revived estimation theory. They provided an alternative
method to that of Wiener by assuming the availability of the cbservation over
a finite interval and not limiting themselves to stationary processes. Kalman
and Bucy considered the special class of processes which could be generated
by a white noise forcing function serving as the input to a finite dimensional
dynamic system (explained in the following sections). They assumed complete
knowledge about the model in order to avoid certain very difficuit problems.

The primary interest in Kalman’s estimation technique is in practical appli-
cations. We shall first discuss some basic results of mean-square estimation
(quadratic mean) via the classical approach as well as some basic results of
mean square estimation via Kalman-Bucy filtering. The latter involves the solu-
tion of the socalled “state estimation problems™ associated with finite-
dimensional linear dynamic systems operating in a stochastic environment. A
discussion of characterization of linear systems via the state variable approach
will be carried out later in the chapter.

4.2 SYSTEMS AND MODELING

Physical systems are normally characterized by models consisting of ideal-
ized elen...its which can be defined mathematically. Choosing an appropriate
model which characterizes all the features of the physical system is very
important and generally very difficult. For example, if an unnecessarily com-
plicated model is used, it mav be impossible to analyze the model. On the
other hand, if an extreme!v simple model is utilized, the results obtained by it
may not bc a realistic approximation to the physical phenomenon. Generally



speaking, a model of the physical system may be mathematically expressed via
integro-differential equatic: s. Although in real life very few systems are linear,
they can often be adequat 4y approximated by linear models over an operat-
ing range of interc:t, v treatment of a nonlinear system is extremely dif-
ficult; therefore, it is Ofi:; necessary to assume that the system under study is
a linear system. The gencral steps involved in the study of a physical system
may be described by Figvre 4-1.

PHYSICAL

LINEARIZATION Lans COMPUTATIONS
e g
EQUATIONS
PHYSICAL o | €ar DESCRIBING -
SvSTEM 5. STEM = Twe LmEaR soLuTion
WODEL

Fig. 4-1. Characterization of a Physical System.

A convenient method of characterizing a linear system is by its input-
output relationship. In gencral, a system may have many inputs and many
outputs.

The electric circuit given by Figure 4-2 can be considered as a system with
a single input and a single output, where e(f) is the input and e (¢) is the
output.

, 1
INPUT { efe) /:D J c $ eof! ourrur

Fig. 2. RC Electric Circuit

In a linear system, the variabl:s u(?) and (£} can be related by

?
U f hG, ) u(s) A, ulty) =0
t,

n

if the system is causal 1d is .t rest at 1, where h(z, A) is called the system’s
impulse response. I¥ .ie system is characteriwva by a constant coefficient
differential equatic i, then it can be shown ti.at hit, X) = A(r -2).
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4.2.1 State Variable Characterization of a Linear System

The classical method of describing a linear system is by its impulse re-
sponse and, if the system is also time-invariant, by its frequency domain
transfer function. It should be emphasized that frequency domain analysis,
although the most attractive, can only be utilized for time-invariant linear
systems. In nonlinear and time-vary.ng linear systems, the frequency domain
analysis cannot be utilized to advantage. Even in the time-invariant case the
frequency domain transfer function suffers from the major disadvantage that
all the initial conditions of the system are ignored. The analysis and the
synthesis of linear systems, time-varying or not, is a formidable task for multi-
variable systems (vector input-output), and determining the interrelated effects
in a multivariable system is a complicated and exhausting process.

The modem altemative to classical methods of describing a system is by
the “state variable™ technique, which is a matrix method for handling multi-
variable systems. The technique aids conceptual thinking and provides a unify-
ing basis for guantitative information about the system. The state of the
system is defined in terms of a minimal set of variables X' l(t). cees Xz(t). ceen
Xn(r). such that information about these variables at time ¢ = r_ along with the
input u(¢) for all ¢ > r, uniquely determines the output Y(¢) for 1 > to:

The state is the answer to the following question: “Suppose u(?) for ¢ > [
is known. What additional information is needed to completely obtain ¥(r)
for 12 ¢,7" We shall discuss the concept of state later in the chapter and give
examples of its use.

4.3 MEAN-SQUARE ESTIMATION

In this section we shall construct a mean-square performance index in order
to carry out the estimation process. Throughout this section, unless specified
otherwise, the norm of a random vector X is defined as

i = x'x

where X is a column vector, and prime denotes the transpose.

Now let us specify the estimation problem. Let two random vectors X and
Y of dimensions n and m, respectively, be jointly distributed. Suppose Y is a
measurement which in general has been contaminated by noise. It is intu -
tively obvious that the received measurement, Y, should improve the informa-
tion about X. That is, if we had an a priori guess about X, knowledge of Y
should improve the information about X. To be more specific, let us ask
ourselves the question, “Given the measuiement Y =y, what is the best esti-
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mate of X, denoted as X(Y), corresponding to the random vector X?” The
concept of “Sest” has not been defined, but the most popular criterion is the
mean-square estimate. Thus we are seeking to obtain the estimate, X(Y),
which is the function of measurement ¥ =y such that:

EQX - X(NI,_, ) = min E(X - 1121 ] @.1)

over all random vectors /.

The criterion given by (4.1) is referred to in the literature by the following
names:

(1) Minimum mean square estimate

(2) Least square estimate

The solution of (4.1) is relatively simpie and is given by:
Xo) = E[xi1y) @2

Hence, we are assuming a cost function associated with the uncertainty of X.
We choose f(y) as the best estimate that Y has the value y under condition
(4.1) and claim it is given by condition (4.2).

Let us verify (4.2).
E[Ix - ll|2|y] =E[X-D(X- niJ
=E{X'X-TIX- XI' +I'D vl

= E{W - EIXIY}IR] + EIXN21Y] - REfXIY)N2

From the above equation, the only term that has [ involved in it is the first
term, and the right-hand side of the above equation is minimum if and only if
E[lll - E[XI Y]}l ] =0, which implies that the best solution of /, is:

T=E[X1Y] = X(1) 4.3)
It is very important to mention that, in general, ?(Y) is a random vector,

since f(°) is a function of the random vector Y. However, for each measure-
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ment Y =y, the corresponding )?(y) is a deterministic outcome of that ran-
dom vector.

Let g be a function of ¥ from R™ > R" and assume f, () #0. From
condition (4.1) it is obvious that:

ElNX - X(YW?1 ) SEMX- g1 ) “9

because we substitute g(Y) for 7 n that equation.

Now, let us take the expectc: value of both sides of Eq. (4.4):
BEN X - X0l 21, ) < BETNX - g 21 y)) @5)
Utilizing the identities:*
EENX - X211 = ENX - X2
and
EENX - g 21, D =ENX - g
we obtain:

ENNX - X(MI %) <EMNX- gV ?) (4.6)

Eqyation (4.6) states a very significant result: the estimate X=E [X1Y] is
the best solution for the unconstrained case. Thus, the result can be appro-
priately summarized via a theorem.

Theor+ 1

For two joiy.y distributed random vectors X and Y with joint probability
density functions f, . (x,y) and f,(¥)#0, the best estimate of £ nx -

gVl %] is given by:

Y =Exiy] =gy 4.7

*We are using the general result E(E[h(X, ¥)I Y|) = E[h(X, ).
12



Remark 1. If e = X - X, then X-= E(X1Y) is uncorrelated with any
mapping of the random vector Y. Mathematically we can write:
Elg(V)e') =0

where the prime denotes the transpose. The reader is advised to verify this
equation.

4.4 LINEAR ESTIMATE

The estimate just obtained is indeed the best with respect to the mean-
square cost function. However, X(Y) is a nonlinear function of Y (for the
general case), and it is extremely difficult to obtain the exact relationship.
Since very often f, ,(x,y) is not available, then E(X|Y) may not be achiev-
able either.

Now we shall do the next best thing and introduce a constraint that f(Y)
has a linear form of Y. That is,

X=AY+b 4.3)

where A is an n X m matrix and b is an n-vector. With the constraint (4.8) on
Eq. (4.7), we get:

E[l X - AY - bj|?) =E[(X - AY - b) (X - AY - b)} 4.9)

Now we can choose 4 and b (parameters) such that Eq. (4.9) is minimized.
Let us denote the optimal values of 4 and b as 4, and b, thus X(») shall be
given by:

X =4,Y+b, (4.10)

Without any loss of generality, assume that X and Y have zero mean. To
minimize the cost function given by Eq. (4.9), we shall calculate A, and b, in
the usual manner by setting:

D fX-AY-bll2] =2 E[(X- AY - b) (X- AY - b)] =0

ab ob
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. oAV - bl 2] = O AV - BY (X = AY - b} =
a4 EWX - AY - b *) = 32 E[(X - AY - b)Y (X - AY b) =0

From the first equation, we find:

and, from the second,
- -1 -
Ay = EXY') [BYY)] ™ = Cyy € @.11)
since X and Y are zero mean. Hence,
in=c,,Cc'y (a.12)

Now, if X and Y do not have zero mean, the random variables X - m, and .
Y - my, have zero means. Applying (4.12) yields:

"\ .
X-my=Cy Cy (Y-my)
or, equivalently,
X=m, +C, C;' (Y- my) (4.13)

In the next section, we shall show that the best estimate can be derived by a
different appruach, the so-called “orthogonality principle.” The orthogonality
principle is one of the most important ideas in linear estimation theory. Let
us define an important concept.

Definition 1
An estimate )?(Y) is defined to be unbiased if:

EX(n) =X (4.14)
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That is, the average (with respect to [y () of the estimate is equal to the
true value. This definition is motivated by the fact that if we are receiving a
perfect measurement Y (i.e., Y is not random), then X(Y) is not a random
variable, and

EXN =XV =X

That is, if there were no measurement errors, and thus no uncertainty, then
the estimate is identical to the true value. Also for the unbiased estimate, we
can write:

E(X - R)(X- B)'] = E(R - ERY(R - ERY] = C;; = E(ee’)

(4.15)

where

e=X-X

4.5 ORTHOGONALITY PRINCIPLE

In this section we shall assume, without loss of generality, that all param-
oters are of zero mean, unless specified otherwise. For example, if the mean
of X is non-zero, then we shall introduce a new random variable X = X - m

X
which will have zero mean (as in the previous section).

The concept of orthogonality is extremely important in the theory of
linear mean-square estimation. We shall show that the orthogonality principle
will serve as a necessary and sufficient condition that the linear estimate X be
the best. The orthogonality principle states that if the measurement Y is
orthogonal to the errore= X - b'¢ , i.e.,

E{(X-X) Y] =E[eY'] =0 (4.16)

then the estimate X is the best linear m.s.e.

Definition 2
An estimate X is optimal if it is the best linear mean-square estimate.

118



4.5.1 Discussion of Vector Spaces

The only differcace between those spaces that are generated by random
vectors and those that are nonprobabilistic is due to the way we define the
inner product (see Appendix B).

Let ¥ be a vector space generated by the set of all linear combinations of

the random vectors X, X,,..., X . Let the inner product between two vec-
tors X and Y € ¥ be defined as:

X, N 2EX'Y) @.17

The norm generated from this inner product is defined by (X, X)'/2. Since
the norm under the definition of the inner product is different than the norm
{I*}| in the previous section, we shall denote it by [i-|l q.m.’ where it is defined
via:

X2 . = X) = EX'X) (4.18)

Assume that the n vectors X, ... ,Xn are linearly independent, and let M
be a subspace in ¥, Then we know that every vector X in ¥ can be uniquely
decomposed into the sum of two vectors, n, belonging to M and n, belonging
to the orthogonal complement of M, denoted by M*. Thus,

X=n,+n,
where
7, €M and 0, €M,
Recall the projection of X denoted as P on M is given by:
PX=n,
and the projection of X denoted by Q on M is given by:

QX =1,
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where
P+Q=]
and 7 is the identity operator. Hence,
Q=I-pP (4.19)

»

Now we cun use the concept of a vector space to obtain a significant result.

Theorem 2
Let X be a random € ¥, and let Z be a vector €EM. Then

Nx-21% . =E(X-2) - 2)]

reaches its minimum if and only if

Proof
For any X € ¥7, we have

X=nq,+tn,
where n, € M, n, € M", and 5, = PX, 1, = (/ - P) X. We shall also have:
WX-2Z02  =E[X-2) (X- 2)
=E{{(X-n)*+(, - D) [(X-n)+@, - 2}
(4.20)

In the above equation X - 7, is orthogonal to M, i.e., X - n, € M, while N,
Z, n, - Z are all members of M. Uiilizing these facts in Eq. (4.20) yields:
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I - V(X - n -~ 2V (p -
WX -2ZIg o =ElX-n) X-n)]+Eln, -2) @, - 2)]
= - 2 - 2
NX= gt 0y - 202, (4.21)
From the above equation, it is obvious that:
2 - 2
Nx-2zu, , 24x-q0 4.22)

since [in, - ZI :.m- > 0. Thus, the inequality in (4.22) becomes an equa' 'v if
and only if

Z=n| =PX

4.5.2 Application of Theorem 2

Assume that we have received m measurements that are linearly inde-
pendent, say, the random vecters Yl, )’2, ey Ym. Let M be the vector spice
spanned (generated) by the set of all linear combinations of ¥ ,...,Y

1 m’
According to the theorem, | X - Z|| :.m. is minimized if and only if

Z=PXEM

If Z € M, then Z can be written as the linear combination of
Y Y, oY,

Claim I. letY ,Y JRREER Y, be the measurement vectors (observations),
and let M denote the vector space generated by these measurement vectors,

Then vector X is an optimal estimate of X if and oaly if X is the projection
of X onto M.

Claim 2. The vector X is an optimal estimate of X if and only if the error
e= X - X is orthogonal to the observation vectors YoY,....Y, e,

ElX-RY)=EleY]) =0 fori=1,...,m

Claim 2 follows from Claim 1, because if £ is the projection of X onto M,
then X- £ € M,
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Example 1
In Section 4.3, we derived the optimal estimate £ as:

X=cC

XYC

-1
r Y

when we had one observation vector only (see Eq. 4.12). Use the ortho-
gonality principle to derive the same result.

Selution
BeY)=ElX- % -1 =0
Since we know X = AY, where 4 is to be determined, then
E[(X- AV)Y') =E[XY' - AYY'] =0
This is true if and only if
BXY)=C,, = ARYY)= AC,
Assuming that the inverse C,' exists, then it is trivial to see
A=C, C.'
as asserted.

Example 2
Let both X and Y be random variables such that:

m, = E(Y") and E(Y) =0

Show the best linear m.s.c. of X = ¥ 2 is given by:




Solution
We know the mean of the value X is:

my = EX) = E(Y?*) #0
Thus, our estimate £ shall have the form:
R=aY+b

where we should minimize

E|X - (@Y +b)]?

with respect to @ and b as in Section 4.3. However, this approach is relatively
lengthy.

Using the orthogonality principle, the solution is much more direct. Let Z
be defined such that:

Z=X-EX)=Y*-m 4.23)

2

Z has zero mean, since E(Z) = EX - EX = 0. Now we can use the ortho-
gonality principle:

ElZ-2v)=0 (4.24)
where
2=4ay (4.25)
Hence, from (4.24) and (4.25),
ElZ- AY)Y] =0
which implies:

A= -g-(zy——);; (4.26)
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Substituting Z from Eq. (4.23), we get:

EY'-m) ¥} my-mEN) m,

“2 Blz mz

»n
ZeR-m =ay=—y
i m,
From the abowe, it is obvious that:

A=—Y+m
m, 2

4.6 LINEAR MEAN-SQUARE ESTIMATE OF
CONTINUOUS STOCHASTIC SIGNALS

As discussed in the introduction, Wiener and Kolmogorov formulated the
problem of optimal separation of signal s(r) from noise n(r), where the von-
tinuous measurement Y{¢) is given by:

Y(1) = s(r) + n(r)
where both s(f) and n(r) are assumed to be wide-sense stationary processes.
We shall use the same notation for the ensemble and the process. The
purpose of the Wiener-Kolmogorov (W-K) theory is to extract the signal from
the noise, that is, to derive an optimal estimate of s(r) denoted by X), where

the performance index is as before the mean square.

Let us consider a more general case that 5(f), namely, s(f + a). Let Nt + @)
be the corresponding optimal estimate and let the error e(f + @) be defined as:

e(tto)=s(t +ta)-qr+a)

There are three important cases:
(a) If @ > 0, then N¢ + @) is called the (optimal) prediction of s(t + a).
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(b) If @ = 0, then N¢) is calied the (optimel) filer for s(r).
(c) H a <0, thea ¢ + a) is called (optimal) smoothing of s(7 + a).

4.7 THE WIENER-KXOLMOGOROV THEORY

The Wisner-Kolmogorov (W-K) theory stilizes the best linecar mean-square-
estisaste criteria applied to stochastic sigaals in a manner to be specified. The
W-K theory emphasizes the timo-domein analysis. The smoothingend-
prediction problosn was first tseated by Wiener and almost simvitancously by
Kelmogosov. To make Wicner filtering feasible, some assumptions cosceming
the signal 5(¢2), the noise n(r), and the meamrement

Y() = s(e) + n(2) @.27)

are made. We shall confine cusselves to ome-dimensional sigaals throughout
this section for the sake of simplicity.

Assume that 5(r) and n(r) are wide-sense stationary processes of zero mean,
such that 5(¢) and () ace wacorrelated, ie.,

Els) a(s)] =0

Now let us assume the meassrement Y(¢) is the input of a lincar time-
invariant system, characterized via the impulse function A(r) (see skesch).

L/

The outpe. sigaal Y (¢) be written as:
Y, ()= f M) Y - 1) dr .29
Note that Y (1) is a linear function of Y(*).

Now the objective is to select the appropriate impulse function denoted by
i:(l) such that we minimize the mean square of:

Elel0)] = E{[Y() - st + )? } 4.29)



()= Y(1) - ot + a) (4.30)
and @ is a fixed constant.
mmdsews(t)mtmhimﬂnpeﬁmhdexp’m‘by
(4.29) gives rise to an optimal solution. The filter with impulse response k()
is called the optimal filter.
Ele’(1)] can be obtained in tenus of covariances 5(¢) 2nd n(¢), since
El3(0) = E{iv (0 - or + @)}
=E[Yi0] + ¢ + o) - 26 O +a)] (43D

The first term of the above can be written as:

EY @) =E { f f k(1) Mo) Y(t - 1) YUt - a)drda} @32)

Assume that the expected value can operate inside the integrand. Then,
utili -ing the property of the stationarity, we can verify:

E[Y- 1) Yt - 0)] = E[(Y(r) Y(0)] =R (7 - o)

= E{ls(r) + n(1)] [s(0) + n(0)]}

=R ,(r - 0)+R (- 0) (4.33)

Hence,

FIy ) = j f h(7) k(o) [R(r - 0) + R (1 -~ 0)] dr do

4.34)
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Similarly, we can verify:
E lYo(t) st +a)] = f‘ I7) R (1 + a)dr (4.35)

and remembering that R (0) = “[s’(¢ + a)] and substituting this and (4.34)
and (4.35) into (4.31) yields:

Efe(0] =R (0)- 2 f (1) R (v + ) dr

+f f- k(r) k(o) [R (7 - o) + R, (1 - 0)] drdo

(4.36)

The above equation demonstrates that .he optimal solution depends on the
_autocorrelation (covariance) functions only. It should be emphasized that this
is an extremely important result, because the optimal filter h(¢) is obtained
from the knowledge of R () and R_(-) and not- directly from s(r) and a(¢).
Hence, there are infinitely many signals that give rise to the optimum solu-
tion, all having the same autocorrelation (covariance) function. Wiener mini-
mized F [e:(t)] given by Eq. (4.36) via the calculus of variations; we shall use
the orthogonality principle given by Theorem 1. We can now state the solu-
tion for the optimal filter by the following theorem.

Taeorem 3 (Wiener-Hopf)

E[e:(t)] given by Eq. (4.29) is minimized if and only if #(t) can be
obtained from the solution of the equation:

Rs(r+a)=Rn,(‘r+a) =f ﬁ(o,RY(r- o) do

=f ;;(o) [Rs('r -o)+ Rn(r - o)) do

437
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Thus, the optimal solution ¢) is given via:

)= f YO h(t - N) d\ = f Q) Y(t - V) d) (4.38)

Equation (4.37) is known as the Wiener-Hopf equation.

Proof

We have proven the orthogonality principle for the discrete case. In what
follows we shall show that the solution of Eq. (4.37) is equivalent to the
solution of:

Efe (1) Y(0)) = E[(s(r + a) - A1) Y@) =0, forall 0 <r (4.39)

where S¢) is given by Eq. (4.38), 8 = ¢ - 1 with o0 < 7 < oo Let us use the
notation ﬁtllt) as the optimal estimate to Eq. (4.29), given the observation
Y(t) over (-0, 1], where ¢, =t ta.

To prove (4.39), let ¥ be the space generated by the random variable
{s(t')} . Let 0 C ¥~ be a space generated from {Y(r)} given by elements:

q(,) = f h@t, - 7) Y(r) dr

where h(+) is a continuously differentiable function. Utilizing Theorem 1, the
norm (mean square)

s~ all g o,

is minimized if § = Ps € Q and from Claim 2:

E[@t, D) - s(t) q(t))] =0

which yields:

E[e(rllt) q(tl)] =f R, U, - 7l1) h(t, -1)dr=0

which proves the orthogonality condition.
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4.7.1 Discussion

The Wiener-Hopf equation (4.37) will provide the solution for Ai(r). How-
ever, obtaining R(¢) from the integral equation is extremely difficult. Assuming
the observation Y(r) is available over the interval (-, ')’,. we can utilize the
frequency domain approach to solve for ﬁ(t) by obtaining H{jw).

It turns out that i;(t) does not correspond to a causal system (realizable),
since, in general, f(r) is non-zero for t < 0. The condition of realizability is
given by the Paley-Wiener condition (a sufficiency condition) which states that
a system with the transfer function H(jw) = # h(t) is realizable only if

f ) 'L"'MI dw < o (4.10)

w0 1+ w?

The linear system described above will, in general. violate condition (4.40).

If we drop the condition of realizability for the moment, we obtain (to be
proven) AGw) as:

“ S“,(w) exp (wa) S (w) exp (wad
W) = =

S TS, (4.41)

Hence, i;(t) can be obtained as the inverse Fourier transform of ii(iw). Thus,

1 [ S(w) exp [jw(t + a)] )
) o _"ffid)f'“_'“mdw (442)

Let C denote £ [ez(r)] and C° its minimum over all (). We shall also prove
that:

o i = ss((d) Sn(w)

Remark 2. 1f s(t) and n(t) are uncorrelated, then

R (1) =R (1) < S,y(w) =8, (w) (4.44)



Remark 3. Utilizing the orthogonality principle (see Eq. 4.39), we can
verify that:

¢ = E{ist) - §0)? } = EI° ()] - EB*())

= E{ls(n - %0 (0}

C°=R(0)- f R, (7) h(r) dr (4.45)

Theorem 4

The optimal transfer function H(j) corresponding to the impulse response
is given by Eq. (4.41) and C? given by Eq. (4.45) is the minimum (optimai)
performance index.

Proof

From the Wiener-Hopf equation, we have:
R, G+ a) = R’('r ta)= f h(o) RY(T - 0)do
Now let us take the Fourier transform of the above:

exp (jwa) S, ylw) = f R+ a) exp (-jwr) dr

= f f k(o) R(7 - 6) exp (-jwr) do dr

= f h(0) exp (-jcsb) db f R, (N) exp (~jw)) d
—oo p—_ o, —oo o
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Thus,

~ 8,y(w) exp (wa) S(w) exp (o)
e S 3 7% S 0%

as asserted.

To prove Eq. (4.43), let us calculate C=E [ez(t)] via the frequency domain.
From Eq. (4.36), we know:

C= R,(O) -2 f h(1) Rs(r +a)dr

+ f f h(r) k(o) R (7 - 6) d7 do

Thus, C can be rewritten as:

C= 2—1" f Ss(w) dw - 2—2"- f h(7) f S (w) exp fiw(r + @)] dw dr
+-2'l; f f h(7) h(o) f S (w) exp [-jwl(o - 7)] dw do dr

=§'; f S, (@) dw - % f h(z) exp (jwr) dr f §,(w) exp uwa) dw

+§l; f h(7) exp (for) d7 f h(o) exp (-jwo) do f Sy(w) dw

= EIE f {Ss(w) [1-2H" ) exp (wa)l ] + 1 Hjeo)1? Sy (w) } dw
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Thus,

c= 5’; f {Ss(w){lexp (jwa) - HG)I?}+ | Heo))? Sn(‘*’)} dw

Now if we substitute ﬁ(iw) fiom Eq. (4.41) into the above equation, we
obtain:

exp (jwa) S’(w)
exp (jwa) - 5, ()

S y(w)z

C°=§1"— [Sx(w) + ) 5, ] It

1 [54)5,6)
“w | TS %

The proof is now complete.

Example 3

Assume that the signal s(r) and the noise n(r) are uncorrelated and that
they are both of zero mean. Let

Ss(w) =

1 +w?

and

S(wy=1

Obtain the optimal estimate N¢) of s( + a).

Solution

Since the noise and the signals are uncorrelated, then Sy(w) = Ss(w) +
Sn(w). If a=0, then

n 2
fijw) = ll+w - l_

}+w

2
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and
|
E(:)=2\‘ﬁexp - VZidl]

For prediction and smoothing & # 0, then

2+ w?

AGw) = exp (jwa)

and 7i(¢) is its Fourier transform.

4.7.2 A Very important Remark

Although the optimal impulse response 0] corresponding to ) is not
realizable, it can be solved mathematically. We have solved for A(jw) by
utilizing the frequency domain analysis, where il\(l) is the inverse Fourier
transform of ﬁ(iw). We should emphasize that the solution was possible in
closed form (see Eqs. 4.41-4.43) by making some significant assumptions:

(a) First, we assumed that the measurement Y(¢) passes through a time.
invariant linear system (filter).

(b) The measurement of the observation Y(r) was available ove: the sem-
infinite interval.

Assumptions (a) and (b) were made so that we could utilize the frequency
domain approach to solve the complicated Wiener-Hopf equation.

4.7.3 Wiener-Kolmogorov Theory for the
Time-Varying Case

It should be emphasized that the Wiener-Kolmogorov theory does not have
to satisfy assumptions (a) and (b). In that case, the optimal linear system will
be time-varying, and we would not be able to use the frequency domain
analysis to advantage.

The W-K theory for the time-varying case assumes the availability of the
observation Y(r) over thf finite interval [to,l]. Now we will seek a time-
varying impulse function h(z, 7) such that (see sketch):

t
s(r) = f h(e.7) Y(r) dr (4.46)
‘o

130



whete.

C° = min E[eX()] = E{ist¢ + o) - §(0)?} @47
over all h(¢, 7).
j‘l
hler) Yir) or
Yi) L)
> hier) —

We now state 3 general theorem conceming the optimal solution.

Theorem S (Wiener-Hopf)

_ The optimal solution r) given by Eq. (4.46) is obtained if and only if
h(t, 7) is solved from:

t
R, (t-a)= f (¢, 0) R, (0o - a)do (4.48)
o

Proof

The proof of tr Wiener-Hopf equation given by (4.46) is equivalent to the
orthogonality principle:

E[eu(l) Y@ =0, t, <0<t

as already discussed by Theorem 3. The proof is identical to that of
Theorem 3 with the only difference being that the integral limits are from ¢,
to t and k(¢ - 7) ‘= replaced by h(t, 7).

Note that if the power spectruuns of n(f) and «r) do nor overlap (see
sketch), then S (w) S (w) =0 and from Eq. (4.43), we g :.

c%=0
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I s.‘u' Splw)

Thus, there is no error in the system. Hence, we can separate the signal and
the noise perfectly.

4.8 OPTIMUM CAUSAL SYSTEMS

Now we shall seek an optimum system which is constrained to be physi-
cally realizable, i.e., the impulse response should be A(\) = 0 whenever A <O0.
" Thus, from Eqg. (4.38):

) = f QO Y(¢ - ) d (4.49)
0

that is, 5{(r) is not a function of Y(r - \) for A < 0, which is not available,
since AQA) = 0 for X < 0. The upper bound is o2, since the observation over
the interval [-eo, ¢] is avail:ble to the estimator.

Without any loss of generality assume that @ = 0. Then the orthogonality
principle is:

E{[s() -KMN Y -1} =0, for0€7<oo0 (4.50)

and its corresponding Wiener-Hopf equation is:
R, (1) = f k(o) Ry(r - @) do (4.51)
0

or

R, (1) = Ry (7), forallr>0 4.52)
(see Eq. 4-50).

Let g(1) be defined by:

q(r) = R,Y(‘r) - R?Y(r). for all 7 (4.53)
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Note that for alt r > 0, g(;) = 0. Taking the Fourier transform of the above
yields:

0w) = 5, (@) - §,(w) =S, (W) - Ajw) Sy(w)  (4.59)

assuming (w) exists. Now replace w = sfj in Eq. (4.54) to get the bilateral
Laplace transform:

06) = §,,6) - 8, ) =5,,6) - A) 5,6) (4.55)

We have already discussed the fact that the bilateral transform F(s) of any
absolutely integrable function £(t), for ¢ > 0, wili have poles in the left-half
plane (LHP), and, for ¢t < 0, will have poles in the right-half plane (RHP).
Thus, O(s) cannot have LHP poles since g(r) = 0 for all 7 > 0. We know S, (s)
is an even function of s; let us decompose it as follows:

$,() = $3(6) 57(-5) (4.56)

Where §(s) wili have LHP poles and S, (-5) will have RHP poles (that is,
5y(s) is analytic in the RHP and S (s) is analytic in the LHP). Using
Eq. (4.56) in Eq. (4.55) yields:

0(s) = S, (5) - H(s) $,6) S -9) ST

From Eq. (4.57) we obtain:

" S, ¢(®)
fity 306 = 22 - 06)_ (4.58)
S,(-s) S (-5)

We observe that A(s) $5(6) has its poles in the LHP and Q(s)/S /(-s) has all
its poles in the RHP. But SsY(s)/S;(-s) has peles all over the complex plane.

Let

G(s) = (4.59



The partial fraction expansion of G(s) can be decomposed as:

66) = G,6) + G, 65) 4.60)

whencl(s)wﬂhavempdesnd(?z(s)willuvem?polesmly.

Now choose (see Eq. 4.58):

AL
5,6)

4.61)

Thus, /(s) given by Eq. (4.61) is the solution of the Wicner-Hopf equation.
The above solution is due to Shannoa and Bode.

The following examples are taken from reference [8).

BExample 4
Let s(£) and n(r) be stochastic Signals of zero mean, such that:

R()=3exp 17D

R,(?) = 5(r)

Esttyng)] =0
Let us derive an optimal §{r) of s{t) over (-#o, r).
Solution

From Eq. (4.58):

S,y® o)

fis) s40) = = =
Sy(-8) S7(-s)
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and from (4.61):

. G

s;(x)

where G (s) will correspond to the LHP poles of S_ (sHS(-3), upon partial
fraction expamsion, we get:

S, y(w)= S.(u) =
ltw

4+6?

Sr(w) =]+ S‘(w) =
1+t

The bilsicral Laplace transform corresponding to S (w) is:

2+9C-9)
SO (a9
or
. 2+g
5,60 =145
and
SO _ - 3 1,
St @-9M-9 (1+5)(2-9) i+s 2-5
Hence,

i ~ ~
G, (= l—;—-’-andlf(s)= > h(t) = exp (-21)

2+s
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e——— m.m j———f

Sometimes we designate the procedure by the block diagram:

A ! a‘ >
24¢;3

The filter can also be written as a differential equation:

A =-Be) + N0

Example S
Let 5(r) and n(s) be given such that:

R(r) = exp (- Irl)
R_()=0
R (1) = exp (-2 I1])
where s(f) and a(f) are of zero mean. Let Y(A) = s(A) + n(?) be given on

(-0, ¢]. Find the optimal estimate Nr) of s(r).

Solution

S, y(w) =S (w)=

1+ w?

and

62+ w?)

S =S S =
(W) = S (w) + 5 (w) s @b
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Now the bilateral transform corresponding to §,(w) is obtained by inspec-
tion:

V6 (VZ +3)

Sy Gr9a )

Also, the partial fraction expansion of S‘(s)ls;(-s) must be obtained:

SIS -5) = 201 - £°) =G,() +G,6)
s V6 (VZ-9I(1-9Q-35) ! 2

G ()=

l*\/_(“’)

after partial fraction expansion. Thus,

e - (H vz s/zf?s)

The optimum filter is given via the figure.

vin - | S
His) pe—

4.8:1 Optimal Prediction and Smoothing

We have thus far obtained the optimal estimate Nf) of s(r) given Y(r) on
the interval (-eo,¢], i.e., we have derived the optimal filter. Remember that
Nr) is the output of the linear system with the impulse response i;(t) and the
input Y(s). Suppose we are interested in estimating s(r + 1,) based on the
same observation Yf) on (-, ¢], where t, > 0. This is called prediction.
Before obtaining the optimal predictor S+ ), let us generalize the estimation
problem somewhat.

Let s(f) and n(r) be as before, i.e., they are zero mean and wide-sense
stationary such that:

Rm(r) =0
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Define
W) = f “g(l) ot - N dx (4.62)

where g(+) is the impulse response of a time-invariant system.

Now let us minimize

C=E[M0) - W (0] (4.63)

where W (¢) is the output of the filter with impulse response ll(:) and input
Y(#), and h(-) is restricted to be causal. The optimal solution WA(r) is thus the
output of the system with impulse response h(r) and the input Y(¢). Equa-
tions (4.62) and (4.63) are the generalization of the filtering problem. For
example, if g¢) = 8(¢), then W(¢) = s(¢).

Ifg() =8(e ¢ to), A >0, then W) =s(¢ £ to), which corresponds to the
observation Y(A) over the interval (-oo, ¢).

If g(r) = exp (-a7), 7 2 0, then
W(t) = f exp (-ad) s(t - N) d\ = f exp [-a(r - N)] s(A) dr
0 -
(4.64)

Let & (jw) denote the Fourier transform of g(r). Then following the same
procedure as from Eq. (4.50) to (4.61) we obtain:

G (5) S, (5
5,(-5)

=G, + G,(5) (4.65)

where (4.65) is a generalization of (4.60).
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Now ﬁ(s) is given by:

. G
H(s) = — (4.66)
S,

Remark 4. In Examples 4 and 5, %(s) = 1.

Example 6

Use Example 4 to obtain the best estimate of s(¢ + 1), 7, > 0.

Solution
Z0\) = 8Qx + 1) or G(s) = exp (¢,$)- Thus, as before,”

+ _2+s
SY(S)-_l’rs

Now, due to the factor exp (£,5), the decomposition of €S, ,,(s)/s 79
is given by: .

%) S sY(f_)

=G,(8)+G
5309 ) )

However, let us derive the portion of the function %(s) S,y ()5 (-5) cor-
responding to £ > 0 or G, (s). Thus,

exp (-4y)
I +s

G, s)=
therefore, ﬁ(s) is then given by:

~  exp(-ty)
He) =755

For smoothing, the results are similar.
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4.9 MATCHED FILTERING

In laser and radar applications, when a system is used to detect a target,
the form of the signal must be known. However, often the signal is con-
taminated by additive noise. A good criterion for estimation could be the
signal-to-noise ratio (SNR), which we would be interested in maximizing.

Now let us assume that s(¢) is a deterministic signal such that its Fourier
transform (denoted by S(w)) exists. Let S, (w) be the power spectrum of the
noise contaminating the signal. Let both the signal and the noise pass through
a time-invariant system with the transfer function H(jw), and let Yl(l) denote
the output corresponding to s(f) with Y, (1) the output corresponding to n(r).

Suppose at 7 =, we are interested in maximizing

ria)
o= —
E(Y (t,)

4.67)

Y:(l) is the output power of the signal, and we knaw that E(Y:(t)) is the
output power due to noise. We can write Eq. (4.67) in terms of the frequency
parameter. We know that:

Y ()= f ) h(t - 1) s(7) dr (4.68)
and
Y,(0= f " M- P ) e (4.69)
Also note that:
Sy (@) = 1H{w) 28, (w) (4.70)
and
FY O = Hijw) S(w) (4.71)
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Thus, from (4.71), ¥ (f) can be obtained as F ~' of H(jw) S(w), i.e.,
Y= f H(w2) Sw) exp Get) de @72)

and E[Y2()] as the F ' of §,, (w). Thus,

E[Y,(0)*] = E[Y,(0*] = 2l" f [Hjw)1? S (W) dw  (4.73)

If we are interested in maximizing the SNR given (4.67) at ¢ = ¢,, we must
maximize:

o 2
Y z(rl) [f H(’w) S(w) exp (iwtl) d(a)]

p:—_ =

E[Y2e)l

- (4.74)
2 f |H())? S, (w) dw

We now state and prove the following theorem.

Theorem 6

The maximum value of the signal-to-noise ratio p given by Eq. (4.74) is
obtained if:

H(jw) = k g ((:’)) exp (-jwt,) 4.75)

where k is a constant. Before proving the above, we note the following:

The intuitive concept of Eq. (4.75) is obvious: The filter should pass those
frequencies for which the amplitude spectrum of the signal is large compared
to S"(w), which is the power spectrum of the noise.
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The special case where S,(w) is constant, say, .4, is very important, i..,
white noise. In that case Eq. (4.75) becomes:

H(jw) = J%s‘(w) exp (~jut,) (4.76)

The factor k/A, is gain, which we shall assume is unity without any loss of
generality. Since the transfer function that maximizes p is given by the con-
jugate of S(w) (and exp (-jwt,)), the filter H(jw) is called the conjugate
filter. However, a more popular definition is the match filter, since H{jw) is to
match S°(w) exp (-jeat,).

Proof of Theorem 6
The proof is relatively simple. Using the Cauchy-Schw.rz inequality:

I ff(w)g(w)dwz< f 1f (@)!? dw flg(w)l’dw @77
we set:
f(w) = H{w) [, ()
and
Stw) exp Goor,)
S, (w)]'/?

The left-hand-side, when divided by the first integral on the right, is simply 2mp,
which implies:

o<l 7 18(w))?

7 . —SnTw)_ dw (4.78)

As a consequence of the Cauchy-Schwarz inequality, if f(w) = kg'(w), then
we shall have the equality in (4.77). Therefore, p Locomes maximum if:

H(w) = k g—"%%exp Cat, )

Thus, the proof is completed.
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4.10 KALMAN-BUCY FILTERING

Before discussing Kalman filtering, let us review some basic concepts
needed in the discussion.

Definition 3

A continuous Markov process X(¢) for ¢t .» ty is a process that, for every
T,

FX@IXQ), for X € [t,,7]) = £ (X (DI X(7)) (4.79)

where A can assume any value in the interval to SA <7<t For the discrete
case the definition is similar. Let tgrtysltys ..., 8, be such that:

t, <t <t,<..<t (4.80)

and {X(*)} be a discrete set of random variables taking on the values from
{t‘};'=|. Let us use the notation X(7) instead of X(¢,). We can now define the
discrete Markov process.

Definition 4
The process {X(/)} is a Markov process if for every n such that (4.80) is

satisfied, we have:
FX(M)I X(©0), X(1)....,X(n - 1)) = f(X@)| X(n - 1)) (4.81)

Now utilizing:

F(X(0), X(1), ..., X(n)) = £(X(0), X(1), ..., X(n - 1)) f(X(n)| X(0),
X(), ..., X(n- 1))

and continuing in this manner, and making use of definition (4.81), we get:

(X)), X(2,)), . .., X(e, ) = £ (X(0)) £(X(¢ )1 X(0)) - - - f(X ()| X(n - 1))

= o[ rexorixa - 1) (4.82)
i=1
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Hence, the Markov 1 ocess is defined by the conditional probability density
functions f(X()I X(i - 1)) for i = 0,1,...,n. The Markov process is funda-
mental to Kalman-Bucy filter development.

As already discussed, a linear system can be characterized via the classical
method using the impulse response or the modem approach using the state
variable approach. Kalman-Bucy filtering relies on the state variable charac-
terization, where the state is a Markov process.

The 1eader is assumed to be familiar with the simple state variable represen-
tation. If this familiarity does not exist, the reader should consult Appen-
dix E, which contains a simplified discussion of state variables along with
some examples. That appendix is sufficient for our purposes.

4.10.1 Continuous Kalman-Bucy Recursive Filtering

We shall briefly discuss the continuous version of Kalman-Bucy (K-B) filter-
ing. The most important part of K-B filtering is the fact that estimation is of a
sequentiai nature {(Markovian). We shall discuss K-B filtering for linear systems
unless specified otherwise.

The state variable characterization of a linear system can be generally written
as:

X=A0 X +BO UD (2)
(4.83)
Y@)=C@) X(t) + D(t) LAr) (b)

where X(#) = [X l(t), X "(t)]', where the prime denotes the transpose, IX(f)
is a p X 1 matrix, and Y(¢) is aq X | matrix. A(t), B(¢), C(t .t) are matrices
of order n X n, n X p, ¢ X n, and q X p, respectively.

Example 7

Let a time-invariant system be characterized by the following differential
equation:

3 2
V) 1), 4 d yt(’) £ Y() = 2008 (4.84)

dr dr? d

where Y() is the output, U(r) the input.
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Define the state variables as follows:

X,@t) = Y() (4.85)

X, _ar

ar ar (4.86)

X0 =

dXz(t) _ d2 Y(1)

T dtz (487)

X, =
Equation (4.84) can be arranged so that the highest-order derivative term

appears on one side of the equation. Thus,

3 2
dYt)=_2‘1_l'£'_)-3‘!L(’_)-y(;)+2U(r) (4.88)
dr? dr? dt

Substituting (4.85) - (4.87) into (4.88) and utilizing the defining relations of
the state variable into (4.88) yields:

X, = X,00 (4.892)
X, =Xx,(0 (4.89b)
Xy =-X (- 3X,00 - 2X,() + 2U(D (4.89¢)

The system described by (4.84) can then be defined by the state variable
representation of the form (4.83). Thus,

1 o

a=lo o 1
-1 -3 -2
[0

B=1o
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c={t 0 0]
D=0

The solution of X(r) is given by:

1
X() = ¥, .’o) X(to) + f &(¢, 7) Blr) U(7) dr (4.90)
o
where
dd(r, t,)
o =AM ¥, 1) (491
(1, 1,1 = 1 (identity matrix) (4.92)

d>(t,lo) is called the tramsition matrix. which is a matrix of order n X n.
Furthermore, it can be shown that (see Appendix E) the following 1= 1tions
hold:

(e, 1) = Bl 1) (4.93)
B(1,,1,) = D1y, 1) B0 1,) (4.74)

and @ is a nonsingular matrix.

In a time-invariant system (4, B, C, and D are constants), the transition
matrix ¢(r.to) takes the form:

(. to) =exp {4 (r- ro))

where

2,2 nn
AT, A,
n u!

exp{A-1} &1+Ar+
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A general diagram of the system given by Eq. (4.83) is given in Figure 4-3.

Atr}

Fig. 4-3. State Variable Configuration

The continuous Kalman estimation requires a linear system model of the
form:

X = A@) X(¢0) + B() () (4.95)
Y(1) = C(6) X(0) + v(t) (4.96)

where X(z) is assumed to be a random process, an # X 1 matrix, lAr) a
random noise of zero mean, a p X 1 matrix, »(f) is a random noise with zero
mean and a ¢ X 1 matrix uncorrelated with U1). A(1), B(r), and C(¢) are
matrices of dimensions n X n, n X p, ¢ X n, respectively. The observation
signal ¥(r) is contaminated by the additive noise process W(¢). The most im-
poitant property of Kalman estimation is the fact that a differential equation
technique developed to solve the optimal solution has the property that it can
be synthesized in a recursive mznner because the differential equation tech-
niques are in most instances equivalent or very closely related to recussive
techni -aes. That is, the estimate at one point does not need the processing of
all the measurements, but omiy the information stored by the point preceding
it.

Let us assume the following statistical moments:
ENn =0
Ev(t)=0
EUt,) U'(lz) =Q8(t, - 1,) 4.97)
Ev (1) v'(tz) =La(r, - 1))

EUG,) v'(tz) =0
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where O and L are of dimensions p X p and q X gq, respectively. These
matrices are generally functions of time ¢, and 8(¢, - 1,) is the Dirac delta
function. The functions {Ar) and W) are white noise terms with respective
covariances K and L.

The Kalman recursive problem is one in which we are given the observation
values (continuous measurements) of Y(1), 1, < 7 < ¢, and it 1s desired 10
find the estimate at time ¢, denoted as f(l. I£) or X(z,) having the form

t
X¢, 0= f Kt. 1) Y(r) dr
‘o

where ii(t. 12 is the impuls> response of a linear system with the input Y(-) and
the output X(-) minimizing

E(X(t,)- X, 1) WIX(,)- K D] =1 X)) - R iol? | (4.98)

where W is any n X n positive semi-definite matrix (it can be shown that the
minimization of (4.98) is independent of W.

The state estimation problem can be divided into three classes: (1) filtering
if £ =1, (2) prediction if ¢, > 1, (3) smoothing if £, <.
Filtering

The optimal solution is given in Kalman's original work. We know X\(II 1)is
the optimal solution if and only if it satisfies:

EIX(t)- X(r10) Y'(9)=0. for0<r<1 (4.99)

which is the orthogonality principle: without aay loss of generality we have
assumed 7, = 0.

Since we expect the optimal solution to be a combination of the X(-) ard the
measurement Y{r), we make a guess that X(1] 1) is the solution of the differential
equation

X=1 (0 X+ Fy 0 Y(r). X00)=0 (4.100)
where F l(t) and Fz(l) are chosen such that the orthogonality condition in

(4.90) is saticfied. We know that if the orthogonality condition is satistied
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the solution must be optimal (unique). 'l'hm.an(l)aMF(l)couldbefomd
mehumliq(490)|sst3ﬁed mu.ei’(-)eommmumrmm
(l)mustbeopumal

Indee ), it can be shown that the solution of the form given by Eq. (491)
satisfies the orthogonality principle. The solution is quite tedious. Let us state
the results via the theorem.

Theorem 7
The optimal K-B filtering estimate X{z, is the solution of F.q. (4.91), where

Fy (1) = [A(9) - F (0 C(1)} (4.101)

F,(=Mn coLo 4.102)

L) is given by Eq. (4.97) and A1) is given by:
Py = E{IX()- Xl 0) X - Ry’ } (4.103)
and can be obtained as the solution of the nonlinear differential equation

P=AP+PA’-PC' L' CP+BQB' (4.104)

with the given initial condition A0) = E(X(0/0) X(00)’). Note that we have
dropped the argument ¢ for convenience. The proof will be given later, but we
shall first give an example.

In Figure 4-4. we optimum continuous filter is diagrammed. The input to
the system is the observation Y(r) which is the contaminated signal and the
outputs could be considered as ){(rlt) or Cﬂ(tlt) where CX(t!1) is the
optimal estimate to Y(r).
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Fig. 4-4. Optimum Continuous Filter

Example

An object moves with an unknown constant velocity ¥ on a straight line
trajectory. Suppose we observe the projectile at the initial time 7, =0 at a
known point 5(0) as shown by:

4 ® TRAJECTORY
I o

Thereafter the projectile is tracked for 7 seconds. The observation consists of the
displacement from the origin which has been contaminated by additive white
noise of spectral density N, watts/hertz. Let us assume the velocity is a zero
mean Gaussian random variable with variance o2. Let us find the Kalman filter
yielding the optimal linear estimate of V.

Solution

Since the speed is constant V = 0 and the observation ¥(r) by definition is:

Y(2) = s(¢) + n(r) = s(0) + tV + n(r)

If we let Y(¢) = ¥(7) - 5(0), the dynamic system becomes

Y(r)

tV+n(t)
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Thus,4 =B=0,C=t,2nd L =N, from which
P=F0mo- 0
P = -PX() /N,
Fz(t) =P r/No
The initial conditions are {0 | 0) =0, P(0) = o*.

Tosolve for ?(t),* we need to obtrin F, 2(r) which in turn requires the solution

of P(1):

P(r) ] t

f Pigp=-— f dr
2 No
P(O)-0 0
from which
3N0¢r2
P(t) .
3N, +a*t?

Thus,

t 3¢% "
P = f — (YO - PO d, 0KIST (4.105)
o 3N, to??

[

For the special case that I'r\’(T) - constant as T = oo, from (4.96) we get:

_ 3%
2.3
3No +0°¢

@) - t¥) =0, forlarge¢

*We shall denote V(r,r) by P
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Remark 3. In filtering we shall often write ?(t) instead of ?(rlt) or

ALY UL URED)

which implies
i;(n -V, asaT->o

That is, if the contaminated signal is observed for a long time, we should get the
exact estimate.

Example 9
Let the observation Y(f) be given by:

Y(1) = d cos (wyf - 0,) + W) (4.106)

where d, w,, 8, are, respectively, the amplitude, carrier frequency, and phase.
Let W) be a white noise process with a variance of unity. Assume that w,, 8,
are known exactly. Estimate d.

Solution

Since d is constant, then d = 0. Now, we can have:
X=0

X(0)

X(0)=d
Y(t) = cos (wot- Oo)X +v(r)

Hence, A =B =0, C=cos (‘"o' -0,).02=1and L = 1. From Egs. (4.100) to
(4.103):

P = - [cos (wyt - 0,) ADI? (4.107)

F()=- F2 1) = - cos (wy! - 00) P(1) (4.108)
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Thus,

A ~

X=F () X() + F (1) (1) (4.109)
where F| (1) and F,(r) are given by the previous equations.

The solution £(r) requires the solution P(t) from Lq. (4.107). It is apparent
that even for the scalar case, the solution can become fairly tedious.

Remark 6. Note that X(:) is the estimate of X(¢), given the observation Y(¢).
The corresponding uncertainty (covariance) of f(t) is given by (). Since,

P()=Elee’] = E{IX®)- X)) (X()-X(0)'}
=E {IX(®)- X@))' [R©)- X0 }
=E JIX(@) - EX(0)] [R(0)- ER(D)'} = cov X (1)

for the case of the unbiased estimate, then P(r) is indeed a covariance.

Example 10

In the previous example suppose d is known perfectly and it is desired to
estimate w,, and 8. Obtain the model and the form of the solution.

Solution
Let

X(r) = dcos(wyi-6,)
Then
J'((t) = ~dw,, sin (wot - 8,)
Now if we define X, (¢) = X(1) and X, () = X, (1) = X(#), we have:
X, =~duwy sin (wot - 8,) = X, (1)

X'2 =-d wg cos (wot - 00) =-w; X|(r)
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so that
1[&] B}
dr X,

Y(@)

" [

o Osu
— o —
—_ —_—
ol —
— Nalial

—_

+

A

Thus, by inspection:

B=0
c={1 0]
D=1

(4.110)

@.111)

Now the solution is more involved and the estimate )?(l) of X(r) with its

covariance (r) can be obtained as before.

Example 11

This example is taken from re” .2nce [8]. Assume that Y(r) is a white noise

process with unknown mean X. Thus,
EY(t) = X

E{[Y()- X] [Y(t,)- X]}=L8(ry - 1,)

(4.112a)

(4.112b)

Suppose we want to estimate X when the observation Y(7) is received over the

interval [0, r].
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Solution

Since X is constant, we can construct a model as follows.
X=0
Y = X(0) +v(0)

Ev(i)v(1,) = L8(1, - 1)

From Eq. (4.105), we get:
Py =LPE(»)
or

Pa)
P ()

L—I

Integrating both sides yields:

1
-Pr@=-Lttte P -—
L t-¢

where ¢ is a constant,
However, at t = 0, we get:

-1

P(O)"'"‘!‘ At ('-P{(ﬁ

Thus.
P() =

L1 1 +P(0)

156

(4.113)



Now, substituting Eq. (4.113) into Eq. (4.100), i.e.,
X = FLX0+F, )Y@, X0)=0

where, from Eqs. (4.102) and (4.103),

F\(n) = A - Fy(n Q1) =

o)
Fyn =P C' L) =
" p)
we obtain:
f=—L—20+——v0. 20 =0 (4.114)
f+l;('0')' t+’m

-From the above equation, the transition matrix @ (¢,0) is given by:

L
o0y = 2O (4.115)
This is true because
b= "L—¢. ®(0.0) = ]

)

Equation (4.14) can be solved by using Eq. (4.90). Thus.

®(1,7)

t e TH
X = [ —f@% ___lf@_) -——~;~— Y(r)dr
1]

"Yhoy PO "TPO
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Simplification of the above gives rise to:

'
R = ——'L— Y()dr 4.116)

t+lT0) 0

Since both L and P(0) are constants, we obtain:

4
R = tim } f Y(r)dr
0

| ondend

which is expected. Thus, for a long observation, f(r) be.omes independent of

P(0).
Now we shall prove Theorem 7.

Proof

We can extend the general Wiener-Hopf equation given by (4.48) to the
case where the signal s(¢) is changed to the vector X. Then the cross correla-
tion function R, (¢ - @) will be simply changed to R, (s - ). Let us also
assume that the mean of X and Y is not zero. Then we will change
R, Y(l - a), and Ry(o - @) to C, (1 - @) and C, (0 - «), respectively. Thus,
the generalized Wiener-Hopf equation becomes:

C

i
X’,(t-oz) = Jr G(t,o)Cy(o-a)do “4.117)

fo

where G(t, o) is the generalized impulse response.

The above equation is equivalent to the orthogonality condition. Let us
take the left-hand side derivate of C,,(+) to get:

2 Gt~ @ = 2 E X0 - £ XO) ] (Y@ - E[¥@) )'}
=E [g} X(1) Y'(a)] -E [gf—{] E[Y'(0)]

=E [(AX + BU)Y'(0)] -E [AX + BU] E [Y'(0)]

= A(N) Cyf1 - @) + B(O) Cyy (1 - ) (4.118)
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The above equation was obtained by using Eq. (4.95). Since U(1) is indepen-
dent of both ¥(a) and X(a) for a < t. Thus, C,,(t - a) = 0. On the other
hand, the derivative of the right-hand side of Eq. (4.117) yields:

t .
2 G0 Cyfo - a)da = f %L ¢ 0 - a)do
0
+tGDCy(t - a) 4.119)

However, the left-hand side of (4.119) after denoting Z(¢) for C(£)X(t). can be
written as:

a t
3 f G(1.0)Cy (0 - @) do
fo
a t
=+ | Gto) E{Y(0)- my] [Y(@) - my]'} do
)
F t
=5 | 6to E{lZ(0) - my, + ¥(0)] [Z(e) - m + W@)] }do

1)

t

9 )
3 G(t,0) Cy(0 - @) do +5}-G(t,a) L(a»

‘o

t
f 9G(1,0) Clo0-a)da+ G C(1- ) + ath’.a) L(a)
t

ot
0

(4.120)
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Now, using Y(#) = C(#) X(1) + v(¢) = Z(t) + v(1) and the fact that Cyy(t-®
=0, following Eq. (4.119), we can obtain:

Cr- o) = EZ(N) Z'@) = A(0) Cy (1 - @)

t
A f G{1,0) C\(o - a)do 4.12))
o

Now, if we combine (4.117), (4.118), (4.119), (4.120), and (4.121), we
obtain:

t
f [4(:)0(:,0)- o). G(t.t)A(t)G(t,a)] Cyfo-)do=0,1, <a<r
t
° @.122)

Then, from the above:

A()G(1,0) - a—A%:'—o) - G(t,0)A(1)C(t,0) =0, 1, <0<t (4.123)
Since

t
X0 = f Gl(1, 0) Y(0) do (4.124)
fo

for the optimal solution, combining this with (4.123) yields

- ~t
i - J -:—G(t.a) Y(o)do + G (1.1) Y(1)
. t

0

t
= f [A(1) G(1,0) - G(1,t) C(¢) G(1,0) Y(¢)] do + G(1,1) Y(1)
fo
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which implies
£=A00) R0+ G, 0 Y@ - C()) Rany
= (AN - G, 1) D) Ry + A, 1) Y(1)
Thus,

F ()= jAaw) - Gy C(n] =140 - F(n C(1)]

This part of the proof is done.

It can be shown (left as an exercise) that:
2 = 140 - Fy(0) C(0] e(0) + B Uo) - Fyn) o>
and
Cyylt-a)= Cyzlt - @

where

e(tit) = X(1) - X(r)

We can also obtain (‘Y(o - @) as:

Clo-a) = £V Yo}

E {12(0) + v0)] |Z(0) + v(a)]'}

Cy(o -a)t C‘,(o - a)

= (‘Y(o -a)+ L(o) 6(o - @)
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4
Cx,(: -a) = f G(t,0) Cy(o - a)do =
To

' 4
sz(l -a) = f [G(t. 0) C,(0 - @)do + G(¢, a) R(a)
o

from which

G(t.0) L) = EJIX®) - X)) Y' ()} = C,,(010) C'(1)

If we let

P 4 Cex(OIt)

and since L™ '(r) exists (assumed to be positive definite), we can obtain:

F,(0=G(ny=Pn)C'n L\ (4.128)

The only thing needed in the proof is to solve for P(z). From Eq. (4.125). let
us solve for e(r) or. equivalently, e(t|t).

Let & (7, 1) denote the transition matrix o. (4.125), then

4
e(r) = :l;(r.to) + f ;I;(t.s) [-Fz(s) + 1(s) + BU(s)] ds
)
Substituting

P(1) = Elelr) €'(n)]
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in the above, then, with the assumption that &(0) and {As) and w(s) are
uncorrelated, we obtain (after some manipulation):

[4
P = 8(1ty) Pe) ) + [ 8(09) IFy(0) LG) )

Yo
+ BOB') & (1.9) ds

Thus, upon differentiation, we obtain:

P=-F)CIRD+P) A" - C' F(0)
+ Fy()LF, () + BOB'
where we have used

28-u-FOCO )

in the above.
Now, if we substitute F,(¢) from (4.128), we shall obtain the result, ie.,
P=AP+PA"- PC' L™ CP+BQB
which completes the proof.

Qemark 7. Let the gain Fz(t) be changed notationally to K(r) and the gain
F.(0) 10 F(#). Then, Eq. (4.100) can be rewritten as:

£ = 1) - K@) a0l X + K@) Y0

= A(t) X(0) + K@) [Y(0) - Q) ()] (4.129)

4.10.2 Prediction

The solution of the prediction problem is a simple exension of the filter-
ing problem, and it is actually presented by Kalman in his initial paper.
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SuppoaewewidxtoesﬁmateX(t;)basedog the observation Y(t) given on the
interval 0< r < ¢ for 7, > 1. The solution X(lllt)isgivenby:

R0 =00, .0 Xele), 1, >1 (4.130)

where @(+,*) is the transition matrix corresponding to Eq. (4.100).

The covariance matrix is found accordingly. Therefore, for prediction prob-
lems, we must first obtain a filtered estimate of the state, up to the range of
available data.

Thus, Y(A) should be set equal tozeroforx>.'.andf(t)servesastlw
initial condition in Eq. (4.90).

4.10.3 Smoothing

In smoothing 0 < ¢, <, where it is desired to estimate X(1,). given the
observation over the imterval 0 < T <¢. Smoothing is fa- more complicated
than either filtering or production. We shall not discuss the smoothing prob-
lem here. The conclusion given by Eq.(4.118) does not hold for smouthing
because for ¢, <r, we do not know that X(*) and A-) are uncorrelated.
which was assmned in filtering and prediction.

4.10.4 Discrete Kalman Recursive Estimation

In Subsections 4.9.14.9.3, we have discussed the continuous model repre-
senting the continuous random processes. We shall begin the discussion of
discrete-time version of the problem since the discrete version must be utilized
for computer implementation. There are a number of inherent advantages: for
example, the discrete algorithms can be manipulated by hand and the step-by-
siep processing of information lends itself to a simple development.

In what follows we shall discuss predicuon. filtering, and smoothing.

4.10.5 One-Step Prediction

Consider the discrete dynamic system:

X(k + 1) = Ax(k) + BU(K) (4.131)

Y(k) = CX(k) + w(k) (4.132)
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The signal and noise have the following statistical moments:

EUR) = Ex(k) = 0 (4.1332)
EUk,)) U'tk,) = Qbtk, - k) (4.133b)
Ewk,) v'(k,) = LAk, - k) (4.133¢)

EUk,) v'(k,) =0 (4.133d)

where 4, B, C. O, and L me n X n, ¢ X n, p X p, and ¢ X q matrices,
respectively, which are in general a function of . The quantity A(k, - k) is
defined as follows:

1, ifk =k,

Ak, - k) = (4.134)
0, otherwise

Q and L are assumed to be positive definite.

The initial state X(0) is assumed to be a random vector with a known a
priovi covariance matrix P(0).

We would like to find the estmate of the vector X(k + 1) denoted as
R(k + 1), which is a linear function of ¥(0), Y(1), .. ., ¥(k) minimizing:

EIX(k + 1) - X(k +1]' WIX(k + 1) - X(k + 1)) (4.135)

where W is any positive semi-definite matrix; for example W = [ is a proper
choice, and it can be shown that the optimal solution is independent of the
choice W.

The solution to this problem can be obtained by conjecturing that the
estimator has the form:

Xk + 1) = F,(k) X(k) + F(K) Y(k) (4.136)



where the matrices F, and F will satisfy the relation:

F(k)=4-RhC’ (4.137)
Rk) = AP(k) C'|CPk) C' + L} (4.138)

where P(k) is defined by:
EWX(®) - X(b)) [Xk) - X))’ (4.139)

It can be shown that the matrix P(k) satisfies the following equation:

Pk +1)= |4 - RX) C) P(k)[4 - Rk)C)' + BOB' + k) LAkY

(4.140)
If we rewrite equations (4.136) — (4.140), we obtain:

Xk + 1) = [4- AK) C] X(k) + Ak) Y(k) 4.141)

Rk)=AP(k) C'[CPK)C’ + L)} (4.142)

P(k + 1) = [A - F(k) C) P(k)|A - Ftk) C|’ + BOB + Fk)LF (k)
(4.143)

We must provide the a priori conditions .?(0) and l_’(O).‘ The problem of
predicting more than one step is a simple extension of the above. For exam-
ple, f(k +j) for j > 1, can be obtained as:

Xk+p=A" Xk +1) (4.144)
and the associated covariance matrix is found accordingly.

4.10.6 Discrete Filtering

The filtering problem is the determination of the estimate of X(k) given
the observations Y(0Y, Y(1),..., Y(k). Let us denoic the filtered value of
X(k) by X°(k). It can be shown that X°(k) is given by:

Xy =y Xk + 1) (4.145)
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where X(k + 1) is determined from (4.141) — (4.143). By utilizing these equa-
tions we obtain:

XO(k) = | - Fk) C) AXO(K - 1) + Ak) Y(K)
Rk) = RK)C" [CPK) C + LY (4.146)
Pk +1)=A|1- Rk C] Ak) 4" + BOB

which is the solution to the optimum filter.

4.11 COMBINATION OF UNBIASED ESTIMATORS

Suppose we are given two unbiased estimates b ¢ l(t) and £ (¢) of the same

state X(¢). There are two cases to consider: either X , and 4?; are correlated

or they are uncorrelated. We shall discuss both cases below.

4.11.1 The Estimates are Uncorrelated

x , and X , are said to be uncorrelated if
Elx-X1x-%]=0 (4.147)
The optimal estimate of X is obtained as follows:
X=pr' X, +P;' X)) (4.148)
sEP e P;')" (4.149)
where P, is defined for i = 1, 2 by:
P=EX-X)(x- Xy
4.11.2 The Estimates are Correlated

The solution for correlated estimators is given by:

X (4.150)



P=LPL, +LPL,+LP,L, +LP,L, @.151)
where

P,=EX-%) [X-%,)

L =@ -P,)@ +P-2P,)"

L,=(,-P,)P +P,- 2”12).'

Both proofs are simple and are left for the reader to verify. In the next
chapter we shall apply the estimation theory developed here to two
dimensional signals and images.
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EXERCISES
4.1 Given Xl,Xz, ce .Xn as random variables such that:
EX)=m and var(X) = o

Assumethatxi-mand){,-mareonhogonal fori +#j. Let

PIRS

”
i=t

A-
m=

8t =1 Y o, -y
=1

be estimates of m and o.
(a) Determine whether or not /% is unbiased.
(b) Show that

n 2 n n n
[‘)_“: «, - m)] =,2(X' -mP 3330 X, - m)X, - m)
= =]

i#j

Hint: First prove that
n
n@ - m)=Y" (X, - m)
=1
(c) Determine whether or not 82 is an unbiased estimate of o2.

4.2 Let the random vanables X . and Xz be such that:

E(X,)= E(X,) = m

and

var(XI) = var(Xz) = ¢?
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43

44

with
E[(X| - m)()(2 -m)] =0

@IfX= (Xl,Xz), then show that:
C,.x = (m*,m?)
(b) Show that E(X}) = E(X2) = 0* + m® and E(X,, X,)=m".
(c) Obtain the covariance of X.
(d) Obtain the m.s.e. of m from the data (x, x,).
(e) Determine the conditions such that your mse. in part (d) is un-
biased.

Let R(1) be the autocorrelation function of a process X(#). Suppose it is
desired to obtain the linear ms.e. of X(¢ + A) for some A >0 in terms of
X(®), X'(e), and X"(¢) ie., X(¢ + M) = a, X(t) + a, X'(0) + a, X"(1). Use
the orthogonality principle to determine the optimum estimate of X(r +
A) and determine the ms.e. of the error X(r + X) - X(¢ + ).

The zero mean random variable X is to be estimated in the linear mean
square sense by the random variables ¥, Y,,..., Y  each of mean zero.
Let X be such an estimate. Utilizing the orthogonality principle:

(a) Show that E(e?) = E[(X - X)?] = E{(X - D) X].
(b) Obtain the optimal solution X.

(c) If e, is the error comresponding to the optimal solution, ie., e, =
X - X, then verify whether or not

T
Yl

det ( E |’ Xy ---v,1)
Y
. ['n
m FY'T

det { E Y, --vr,1

LY".J
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4.5 Let Y(¢£) = s(¢) + n(z) be given such that En(t) = Es(t) = 0.

(a) Use the orthogonality principle to estimate 3(t) = (d/dr) s(t), and show
that the optimal estimate (unrealizable) § can be obtained from:

R, (M= f R, (- NhQ) dA

where fiQA) is the optimum impulse response.
(b) Show that

~ jwS, y(w)
H(jw) 5, )

Hint: Sjy(w) =jw Ssy(w).

(c) Given R (7) = exp (-I7l) or Sg(w) =2/(1 + w?) and R, (1) = 28(7),
obtain an optimum estimate § with the constraint of realizability
imposed.

(d) In part (c) design an optimum realizable predictor e +1).
(e) Design an optimum realizable filter for

W(t)=f s(t - D) d\
(U

The answers in parts (c)—(e) can be left in the frequency domain.

4.6 A model is generated when white noise with the variance of unity (unity
spectral density) is passed through a system with the transfer function
1/[s(s +1)]). The model is also contaminated with white noise n(r) with
S"(w)= 1. Assume that E(s(f) n(¢)) =0. Find the transfer function H(s)
of optimum cstimate that will yield the best m.s.e. Also obtain the trans-
fer function of the best m.s.e. of the derivative.

4.7 Consider the RC network given by:

R
NN 1 ®

c

L .

®

®
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where the unit impulse response h(f) is given by:

() = -:;exp (-t/a), with & = RC

Let the input to the filter be p(7) give dy:

Y(1) = s(¢) + n(r)
where s(¢) is given by:
s(t) = A cos (w, t + 0) volts, w =1
(] %o T T

with the random variable 0 distributed uniformly over [0,27]. The ampli-
tude A is constant, and n(t) is a zero mean white noise with its power
spectrum given by

Sn(w) = N (watts/Hz)

(a) Calculate the input power spectrum.

(b) Calculate the input power. .

(c) Calculate the output power due to the signal only
(d) Calculate the output power due to the noise only.
(e) If the signal-to-noise ratio (SNR) is given by:

_ Output power due to signal
Output power due to noise

SNR

then obtain the maximum SNR.

4.8 Let Y(r) be an observation given by:

Y(r) = s(¢) + n(r)
17



where

S @)=L .5, @)=4, and S, (@)=0
w

(a) Find the optimum predictor St + A) by finding the corresponding
optimum impulse response without the constraint of physical realiz-
ability.

(b) Repeat part (a) with the constraint of realizability imposed.
Hint: you may need to use

1+K%% = (1 + V2ks + ks?) (1 - V2ks + ks?)

You may leave your answers in the frequency domain.

49 leot X be a scalar random variable and X and X2 be two correlated
unbiased estimates of X with associated vanances (covariances) o and o
respectively. Let p denote:

p=EfX- X)X - X))
an‘g 0® denote the variance (covariance) associated with X, where X=
of, +BX,.

(a) Show that a + 8 = 1 and derive an expression for o in terms of of,
og, p. a, and B.

(b) Obtain the optimal estimate X, i.c., determine « and B such that X is
optimal.

4.10 Let a system be described via the model:

X, x| |uv,0

x| (xo| |vo
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and

X y
[ 1
Y= +
X
2 Y2

where
EIUU) =Epv] =15(¢-7)

Note that U and v are vectors. Write the appropriate equations for the
optimal estimate. What is the error covariance matrix?

4.11 Suppose it is desired to estimate a constant which is unknown; a system
model may be given by:

X=0, Y=X+v
where
Epp()v(r)] = Q8(t - 1)

Obtain a closed form optinal solution.

4.12 Repeat problem 4.11 if the state niodel is changed to:

)'r='—2'x+ )

and Q = /4, E[U(t) U(1)) = 28(t - 7), and E[Uv] =0.
4.13 A scalar discrete random process X(k) is given by:
Xk + 1) = 0.5 X(k) + Uk)

Y(k) = X(*) + v(k)

173



where U(k) and v(k) are white noise terms such that:
EW*(0) = E[U* (k) = 1
Also assume that:
EX(©0)=0
E[X(0)2% =1

It is obvious that the Kalman estimator (one-step predictor) is given by:

Xk + 1) = [0.5 - F(k)] X(k) + Fk) Y(k)

0.5 Plk)
= piy+ 1

Pk+1)=105- FK))?2 an+ 1+ Fi)
PO)=1,X0)=0

Suppose Y(2) is not 1¢eceived, then pertorm the following:

(a) Piovide the correction (or the adjustment) necessary in the above
Kalman estimator to account for ¥(2) unt being received.

(b) Calculate the loss in terms of estimation error variance assuciated

with 2(3) in part (a). The error variance is denoted by E(3) and is
giver: by:

E(3) = P3) - P3)

where F(3) is the covariance with the observation Y(2) missing.

{(c) Calculate the steady-state cuvariance

P = lim Pl

$$ k > oo
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CHAPTER 5
MODELING OF TWO-DIMENSIONAL
SIGNALS WITH APPLICATION O
IMAGE RESTORATIOI

$.1 InTRODUCTION

Tuis chapter considers large classes of those two-dimensional images that
are best characterized by statistical procedures. such as specifying tiveir first
two moments (mean and correlation) which represent the brightness level of
the signal (image). Although, in heory, classical image erbarcement does not
seem to be vay difficult, th: implementation of every classicl technique has
a drawback because it is nor-ecursive and is seriously hampered by the pre-
sence of noise. Attempts to comstruct two-dimensional recursive filters usually
iail because of numerical stabilitv problems.

Wucen the image has been contaminaicd by random roise and the only
information concerning the image is of a « atist :al nature, imuge enhancen >nt
is a problem of statistical estunatior and filtering. Nahi and Assefi {11} and
Assefi {12] and |13] develuped a recursive procedure to estimate the con-
taminated image. where the stwistical chancterization «f the image (two-
dimensiond signal) is asumed to be spatially stationary. Next, tie image is
scanned horizontally, and the two Jimensional correlation functions are con-
veited into one-dimensional correlation functions via an optical scanner with
‘s output designated as s{¢). The awtocorrelation function of str) 1s nonsta-
tomary and nonsepar ble [14] becar  of the scanner’s periodic movement.
Thus. no finite dimensiond time-invariant dynawic mo-d¢' representing the
statistics of s(r) exists | :4.15].
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The nonstationarity can be remedied by generating another statistical pro-
cess whase autocorrelation function is stationary and which approximates the
autocorrelation function of s(f). The results of this technique are satisfactory.
Since we shall be dealing with the question of realization of autocorrelation
functions and thus spectral factorization, a brief backgrownd of spectral fac-
torization is given.

Nahi and Franco [16) scanned the picture several lines at a time and
derived a vector model which led to a sir “‘er recursive estimat~r than those
of [11] and [12]. However. it does not tane advantage of all the information
available from the image. In other words, the estimation of a given set of lines
does not depend on the data received from the previous lines. Later. Powell
and Silverman [17] viewed the problem in a different light and rederived Nahi
and Franco’s results.

Next. we shall utilize a better apnroximation to s(7) (scanner’s output) or
its autocorrelation function developed by partitioning the image into a collec-
tion of vertical strips and approximating s(7) by a series of stationary random
processes, one associated with each strip. For each stationary approximation, a
corresponding linear time-invariant dynamic model is constructed. A procedure
for recursively enhancing a degraded image is developed in a manner similar o0
the case where the image has not been partitioned. The major difference is
that rather than utilizing one dynamical model corresponding to one autocor-
relation function, a chain of dynamic models corresponding to many auto-
correlation functions is considered. Examples are constructed to show the
effectiveness of the enhancement process.

5.2 SPECTRAL FACTORIZATION

The concept of spectral factorization has become increasingly more im-
portant since Wiep~r's original work [18] on the subject. Basically. spectral
tactorization determines the equations that describe a linecar system when the
svstem is driven by white noise and the covariance of the output is known.
Whenever the covariance function of a process is driven by white noise via a
svsten. of differen.ial equations of first order. we refer to this system as a
dynamical model. More specifically. civen o covariance function R(1. 7). where
t<1, and : <7, for some nixed ¢ .id 7. the factorization problem is to
determine a realizable linear filter (difterential equation model) that. when
driven by white noise. vields R(r. 7) as its output covariance.

It is well known, [15] and |20]. that. in general. no such realization may
exst. However, if its existence were guaranteed. the representation (in some
sense; would be unique. In its most popuiar for u, the spectral factorization
would be confined to stationa:y situations Then the comesponding dynamucal
model und~r consideration would be timcanvanant, and the white nose fore-
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ing function must have started infinitely in the past. This dynamical model
would be asymptotically stable. It is also desirable to deal with finite-
dimensional dynamical models, implying that each linear model must possess a
rational bilateral Laplace transform. We can summarize the above discussion
by the statement of Theorem 1, which we shall not prove, but which is

proved in reference [7].

Theorem 1

A necessary and a sufficient condition that a station:ry process y(t) be
representable as the output of an asymptotically stable. time-invariant, finite,
dimensional linear model is that its spectral density R(s) be a rational function
of the form H(s)H(-s), with

= M)
H(s) 20) (ER))

for som= polynomial

n-1
pls)=s"+ 2 a‘si
i=0
with all roots in the left half part of the s-plane and

n-1i
Mis) =3 8¢

with degree less than or equal to n - 1 and all roots in the left half of the
s-plane. wheie a, and §, are the real coefficients. Tha is, H(s) has all of its
poles and 22ros in the left half of the s-plane.

5.2.1 Determinaion ot the Qutput Covariance From a
Linear Dynamical Model

Consider the following dynamical model. given by:
x = A(0) x(1) + B(D) u(r)

M) = C(r) x(1) (5.2)
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where x(¢) is an » X 1 vector, & is m m X 1 vector, y is a scalar, 4, B, and C
are matrices of appropriate dimensions (not necessarily time-invariant), and
e(f) is a zero-mean white noise vector, such that:

Ex(t)u'(7) = K8(1 - 7) ¢3)

where K is an m X m symmetrical matrix and pri-ue denotes the transpose.

It is desired to calculate the output covariance (an autocorrelation, since
»(2) is of zero mean) Ey(1) ¥(r), given by:

Ey(t) y(r) = C () E(D) x'() C'(r) 4)

Let the random variable x(f,), where 1, is the initial time, be statistically
independent of u(r). It is well known that the solution of x(r) is given by:

[ 4

(1) = M. 1) x(1g) + § V1, 7) Blr) ulr) dr (5.5

o

where ¥(¢, 1) is the state transition matrix; i.e.,

dd(t, 1) _
—ar A ) (5.6)

(e, ) =1 (5.7

Substituting x(r) from Eq. (5.5) into (5.4) and performing some mathematical
operations, we obtain [20]:

Ey(9) y(r) = C()) ¥(1,7) P(1) C'(1) 1z - 1) + C(O) P, (1) (1, 7) C'(0) U7 - )
(58)

P () = Ex(r) x'(1) (59)

where 1(¢) denotes the unit step function.
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From the dynamical model (Eq. 5.2), Px(t) can be shown to be the solu-
tion of the differential equation [20):

P =AP +P A +BKB' (5.10)
X x x
where the covariance P, (¢,) must be given.

5.2.2 Independence of Estimation Problem of a
Particular Coordinate System

In spectral realization, (1), given by Eq. (5.2), is the signal without any
noise contaminauon. Often, we receive a contaminated observation z(7), given

by:
2(0) = (1) + (1) G.1m

where n(r) is acditive noise, which is assumed to be uncorrelated with y(r). In
[20] it is shown that the only information necessary for recursive estimation
is the knowledge of Ey(t) y(¢t + 7) and Ez(f) z(t + 7). That is, the solution ot
recursive estimation in the mean-square sense is independent of the particular
coordinate system for model z(-) and y(+) processes; hence, a v nique solution
associated with minimum mean-square estimation can be obtained where the
models for the processes are not given in advance. All these models are related
to one another by a lincar transformation. For example, if

x = Ax(r) + Bu(t)

y=Od0) + (1) (5-12)

x"=4°%"() + B°u"(1)
» =C"x*t) + 1) (5.13)

correspond to the same realization, then there exists a linear transformation
T(¢) such that:

x'() = D x(1) (5.19)
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and
=Ny (5.15)

where X and £° are the estimates corresponding to Egs. (5.12) and (5.13),
respectively.

The covariance estimates can be obtained accordingly.

5.3 RECURSIVE IMAGE ESTIMATION
5.3.1 Procedure Qutline

The enhancement of images that are characterized only by statistical data
where the picture contains additive noise is considered in this section. The
random process representing the output scanner is charactericed by the output
of a dynamical model with white noise insut. The dynamical model describes
the first-order vector Markov process. 1he procedure of Kalman filtering is
then utilized to recussively determine the minimum mean-square error
estimate of the image. The result is also extended to obtain the smoothing of
data. Two examples, one with very high SNR, are used to illustrate the effec-
tiveness of the procedure. In what follows, the image is assumed to be a
two-dimensional, stationary correlation function of zero mean. Thus, the auto-
correlation function and the covariance become identical. The statistical in-
formation about the imsge and the noise is assumed to be known and uncor-
related, and the noise is additive.

5.3.2 Derivation of Autocorrelation Function of
Scanner Output

Let us scan a picture horizontally using an opticai scanner denoted by s(1).
Let the horizontal position (a continuous variable) be denoted by z. where
0< z €Z. and the vertical variable by an integer n= 1.2, - .V representing
the nth scanned line. The brightness function is defined by b{z.n). Let us
assume. without u.y loss of generality that h(z.m) is of zero mean. The
random process b(z.n) is assumed to be wide-sense stationary. with the auto-
correlation function defined by:

l:'b(zz.nz) h(z,.nI )= R(z2 Sz, - n)E R(z.n) (5.1v)

Assume that the scanner output s(f) has a horizontal speed v = | and.
without any loss of generality. that the vertical movement takes zero time.
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Let us determine Es(¢) s(t + 7) in terms of R(z,n) and Z The variables ¢ and 7
can be equivalently expressed by:

t=jT o, j=012, - N-1, 0<¢<T
=il +17, i=---,-101, -
0<t+7<NT, 0<Y<T

517

where T = Z is the time required to traverse one horizontal line. The scanner
output can now be written as:

Ho+y.itjtl),

fo+y<T

s() = b(o,j + 1).s(t + 7) =
blo+y-T,i+j+2),

ifeo+y>T
(5.18)
Now, utilizing Eqgs. (5.16) and (5.17). we can obtain:
R(7.9).
fo+y<T
Es(t)ys(t +7) = (5.19)

R(oty-T.itj+2),

ifo+y T

It is clear that Es(¢) s(r + 7) is a function of both o and 7, or. equivalently,
of ¢ and 7: thus. it must be nonstationary. The nonstationarity is due to the
edge condition. A simple check shows that £s(¢) s(t + 7) is alse periodic and a
nonseparable function. It can be demonstrated that no ' nite-dimensional
linear realization of this nonseparable autocorrelation exists.

We shall now seek to generate a random process denoted as q(7) such that
it has a stationary autocorrelation function which approximates the auto-



correlation of the process s(f). To generate g(r), we proceed as follows. For a
given t, q(¢) is defined by:

q(1) = s(iT + ¥) (5.20)

where £ is assumed to be uniformly distributed over {0, 7). We sh.ll now
prove the following theorem.

Theorem 2

The random process g(t) defined by Eq. (5.20) is stationary.

Proof
It is easy to verify that:

Eq()=0

by the construction of q(r).

Next, we must prove that Eq(t) q(t + 1) is a function ¢ 7 (or, equiva-
lently, ) only. To accomplish this end, we calculate the correlation function
of the process q(t):

Eq(r) q(¢ ¥ 1) = E.E_IsGT + §) s(T + £ +iT +7)]

T
=7l.-f E,[s(jT+£)s(iT+u+iT+7)]da
0

(5.2

This equation is obtained by utilizing Eq. (5.24y and 7 (T + v, which is
given by Eq.(5.17) and the fact that ¥ is uniformly distributed over {0.7).

182



The subscripts s and £ in (5.21) denote the expectation with respect to s and
£, respectively. From Eqs. (5.19) and (5.21), one obtains:

|
Eqt) q(t + 1) = T[ f R(y,i) dt

o

T
+f R(T- v,i+1)dE
T

it )

=T—;1 RO, + LR - v,i+ 1) = )

(5.22)

where Eq(t) q(t + 7) is defined as 1(1), which is a function of s (or y) only.

It is interesting to note that the correlation function of g(f), namely, n(7),
can also be obtained by averaging the autocorrelation function of s(f) over one
period. However. it is important to mention that such averaging over the
subintervals of a period may not give rise to a stationary autocorrelation
function, and, furthermure, may not yield an autocorrelation function at all.

As an example, consider a scalar random process characterized by a scalar
differential equation:

X=-xtu
»(8) = cos () x(r)
where the initial state x(0) = 1/2 and

Eu(nn =0

Eu(tyulry) =801, - t,)
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Then, the autocorrelation of x(#) can be obtained as follows:
Ex(hxu+1= lEe)nzp - 1)
Thus, Ey(t) ¥(t + 1) is given by:
Ey()y(t+1)= -;-cos (Dcos(t+r)exp(-1Irl)

which is clearly nonstationary, sin.e the correlation function of ){f) depends
on both + and r+7 and is periodic (of periodicity 2#). However, if we
averaged this autocorrelation over [0.7/4], the resulting average would depend
on both tand ¢ +7.

The randomization of & over the period T has the intuitive appeal that all
points of the picture are weighted equally.

The follov ine salient properties of #(7) will be used in what follows:
r(iT) = R(0,)) (523)

Since R(z, n) is an autocorrelation function,

R(0.n) = R(z,n) (5.24)
Thus, from (5.22) and (5.23),
r(iT +7) .
F) <1, foralli.y (5.25)

The above properties indicate that. in general, the correlation function 7(7) has
a periodic nature.

Example 1

Consider a square picture subdivided into a 32 X 32 grid. Let 7 =1 second
and v=1. The signal is a 12 X 12 square starting at the 13th row and 13th
column. Let m and n represent specific rows and columns, respectively. The
abuve signal is represented by the brightness level b(m, n) =6.1 where the
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signal exists and -1 otherwise, resulting in a zero mean sample function. As a
first approximation, let us choose:

R(x,i) = aexp (-u,1z| - p lil)

where a, (TR and u, are to be determined. Computation of ‘he sample power
results in o = R(0,0) = 6.1. The correlation between two adjacent grid points
is calculated as 5.33, which is a value for R(1/32,0) or R(0,1). Hence,

R(x,i) = 6.1 exp (-4.35z] - 0.136lil)

The correlation function is obtained by substituting the above into L.,. (5.22),
and the plot is shown in Figure 5-1.

Fig. 5-1. Plot of r(r) and ra(r) (Dashed Curve) as a Function of r

5.3.3 Dynamical Modeling of Image Statistics

In this section. we wish to deriv. a differentia! equation model whose
solution has . autocorrelation function apnroximating A7) given by
Eq.(5.22). Sin.. we subsequently intend to utilize a Kalman estimator, we
seek a dynamical model of the form:

x() = Ax(t) + Bi(1)
v(1) = Cx(1) (5.2€¢)
where x(¢) is an n-dimensional vector, w(t) is a white noise vector, and ¥(r) is

the scalar signal whose autocorrelation function is Hr).
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The procedure followed is to represent an approximation to r(r), denoted
by r‘(f), as a sum of terms such that each term can be easily modeied, since,
in general, r(r) may not have a rational bilateral transform. The properties of
r(r) may be utilized to decompose r(7) into the product of two functions h(7)
and r(r)/h(7):

) = 7’1%—; h(r) (5.27)

where h(7) is chosen to satisfy:
h(.I') = R(0.9), foralli (5.28)

Since in many practical cases the two-dimensional correlation function
R (z, i) is a monotonically decreasing function of /, a natural candidate for
h(7) is, in those instances, a combination of negative exponentials; i.e.,

I
K@) =3 I exp (-2, 7)) (5.29)
i=1

The function p() is then chosen to be a periodic function approximating
K7)/h(1). The approximate correlation function is:

r(7) = h(r) p(7) (5.30)

Utilizing Egs. (5.23) and (5.28), it can ve seen that the function r(7)/h(7) is
unity at iT and less than unity for all other 7; furthermore, from (5.22) and
(5.29) it is an even function. Hence, p(7) is chosen to be an even function
with period T. Thus, a natural candidate for this function is:

J ,
_ . 2n
p(r)—l_zoaims? T (5.31)
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Consequently, an element of the function r (7) has the form:

I, a.exp (-7l71) cosz?"z‘r 15.32)

and there are (J + 1) / such elements.

A differential equation model with white noise input can be simply con-
structed [8] to model each of these terms. Each will be a second-order system
except for those corresponding to7 = 0; i.e.,

l,ay exp (-),171)

which will te of first order. If the white noise forcing functions (one being
necessary for each i, pair) are chosen to be mutually independent, tne collec-
tion of all these ditferential equations defines the parameters A, B, C and
represents the desired model for 7 (7).

In the course of selecting the approximate function r, (7). we must choose
the coefficients properly, suck taat r (r) is a correlation function. We shall
either guarantee that r (-) is a positive definite function or, equivalently, that
the spectral den.ity of r (7) is positive [9].

Example 2
Using Example 1, let us derive a dynamic mudel for A7). Assuise *hat the
desired mode! has the form given by Ec,. (5.26), and further that:

Eu(t) u(t + 1)’ = K&(1) (5.33

where 8(7) is the Dirac dcta function, the prime denotes the transpose, K is a
positive definite matrix, an!

Ev(t) p(t + 1) = 1 (1) (5.34)
Because «  the exponential nature of R(z, i), we choose:

h(+) = R(0,0) exp (-0.136171) (5.35)
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and

J

()= E a; cos 2ajT (5.36)

/=0

In this example, we use the rotation u, instead Of 0.136.

The modeling procedure can be broken down as follows. The first term
ra(r), namely,

ag exp (-u,1:1)

has ihe bilateral transform:

2“»"0

—r T 2R 37
Vi) G-u) R,) (5.37)

Ti-e function Rl(s) can now be factored inte two functions. Hl(s) and
Hl(—s), where

Vg, Vg,

K =— 2 v
=5 M) (s = u)
and
2a
_ 0"y
Hl(s) v py

v

Utilizing the method of this section. a ~“ynamic realization of H,ts) is
obtained as:

. 53—
X = ypxo(f) + N\ lagu e ()

y,m=x,m (5.38)
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The second term of 7 (7). namely,
a, exp(-u.lfl)cos 2ur

% . *ae following bilateral transform:

2,0 5" +2n) + 1))
6 +8)? +02) [(-s + ) + 2]

R,(s)

The function Rz(s) can be factored out into two functions, H,(s) and h,(-s):

Vaauls + 2a) +4l]
G +a) + Q0

R,(s) =

. V2o, [-s + V(21)* + ul)
Cs+n) +@n)f

where Hz(s) is given by:

vV |s+ 2z + )
s +u) +a)

Hy(s) =

The corresponding dynamic realization of H,(s) is given as:

) = 4@ ) + By

}.(2)(,) = C(2)(2 )(,)
-~
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where the superscript denotes the model corresponding to the appropriate
term. The coeflicients A2), B2)_and C?) are given as:

o 1
A =
-0 v} -2,
v bl"r
B =
| VI, | V2ep + 2 - 23]
D= o

In general. the (K + 1) tem of r (1) is 4, exp (—u'lrl) cos 2nkr which
has the bilateral transform R, |, (5). given by:

20,15 + (2kn)? +l]
R,,, ) = (5.39)
(s +u ) + k] [(-5 + ) + (Ckn)?)

As before, the function R

and Hk”(-s):

(s) can be factored into two functions. H_, (s)

k+l k+1\

VIg,ls + OkeP vl Vs + ke + i)
) X

R, ..(5)
ket (s + pv)z +125k)? (-s + u”)z +(2kn)?

where

0o Vau ls + V(2kn)? +u?)
s) =
(s +1,)* + (2km)?

k+1

and the corresponding dyn .ical model is:
k) =A(k4l)x(k+l)(’) + B(Iﬂl)u(kﬂ)(t)

LA T T a LR ML) ot (5.40)
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0 1 .
Ak = (541)
-Qkn)? vl -2

v 2‘ »
B = ol (5.42)

V2, [ V(2ke)? + p3 - 2u])
ctV =0 o} (543)

It can be seen that the first term of r (r) is modeled by Eq. (5.38). which
is a first-order system, and the subsequent terms by (5.39). which is the
second-order system. Thus, to model the (J + 1) terms of 7 (7). we need a (2J
+ 1)-order system. For example, suppose the function r(7) has (J + 1) terms;
then we can incorporate the first- and second-order systems into a new sys-
tem. whose parameters A, B, and C are obtained as follows:

-, ° o . .0 0 ]
] 0 1
. 2 -
0 j2n? su?) 2, !
0 ) ) |
1
| .
+
o 0 0 0 1
0 ] 0 LT RN -:,.,J
L
Vg, 0 0
0 Vi ., 0
0 VEZu Vi eul- 2l 0
E 0 (5.45)
|
3 Vi, |
[
0 0 Via | VORRE +id ) |
L 4
C= 1 1 01 o <1 0] (5.46)
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Example 3

If in Example 2 only three terms of r(r) are retained, ie.. J=2, the
resultant r‘(f) can be written as:

2
r (1) = 6.1 exp -0.136(7)’.20 a, cos 2ar

If we use the Fourier series for p(r). then ay.a,. and a, vill be given as:

a, = 0.333; a, = 0.405: a, = 0.101

A plot of ra(r) is shown in Figure 5-1. The correlation term
6.1a, exp (-0.136171)

is modeled by:

%, =-0.136 x,(0) + 0.732 u,

The second term in the correlation is modeled by:

y = 9 .
X,=xy % 0.82 Uy

Xy = -394 X" 0.27 Xyt 492 u,
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and the third term is modeled in a similar manner. The terms u, . u,, and u;
represent independent white-noise terms, each with zero mean and correlation
function 6(7), where 8 is the Dirac delia function. The final results are:

(0136 o o 0 0o ]
0 0 1 0 0
A= o -394 -027 0 0
0 o o 0 !
o o 0 1577 -027
0743 o 0 |

0 0.820 0
B=| O 492 0
0 0 0410

0 0 5.04

Often, two-dimensional stationary correlation functions can be approxi-
mated by a combination of two-dimensional stationary correlation functions
of the form:

R(x, i) = R(0,0) exp (-uhlxl - lih (547

Because of the importance of R(x, i) as given by Eq. (5.47). we shall discuss
this special autocorrelation function below.
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Calculating r(7) (given by Eq. 5.22), one obtains:

nr) =

T-7 ]
T exp (-uhlyl - pvhl)

+%exp o IT- 9l -plivil) (548)

where

r=iT+v,0<y&T

Now, let us define a risk function J2(+) such that

NT
R() = j [nr) - r,M)? dr (549)
0
and
J i
r, (1= 2 a; exp (-u,'7!) cos -7.”1 T (5.50)
=0

We can select the coefficients a, such that the risk function J#(r) is mini-
mized. For simplicity, we shall assume that T = 1. It can be shown that J2(r)
can be expressed by [16]:

- exp (20 ) ¢!
RO = T_“;P_(fz—l:"ﬂ) Jo [Hr) - r, () dr (5.5

To minimize $2(r), we must minimize:

t
f @) - r, )2 dr
0
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Thus, the minimization of 2(r) becomes a simple “problem, and the risk
function can be obtained from [16)]. The procedure is to set the derivatives of
HAr) with respect to 4; equal to zero, and the result can be obtained as
follows:

a=a'd (5.52)

where a is a matzix, whose elements are given by:

1
a, = f exp (-Zuvlrl) cos 2=kt cos 2nlr dr (5.53)
]

and d is a column vector, whose elements are given by:
1
d, = f K1) exp (—pylrl) cos 2nkt dr (5.54)
°

Furthermore, the following properties can easily be established:

1 1 1
f [rr) - 7, (M) dr = f @) - f 1(r) dr (5.55)
0 L] 0

1 . 1
2 _ lim 2
j; rayar =, j; r2(r) dr 15.56)

5.3.4 Design of a One-Step Predictor

Since we intend to utilize a digital computer for the estimation process, the
model given by Eq. (5.26) is discretized, yielding:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + v(k) (5.57)
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In addition, the model given by Eq. (5.57) contains the observation noise

element ¥(k), which is assumed to be white, with mean zero and variance 0.

The parameters 4, B, and C are related to 4, B, and C by:

— T
A =exp (A ﬁ)
. TIN T
BKB' = f exp (A ﬁ) exp (-As) BKB'
°

X exp (-A's) exp (A' 1%) ds

C=C (5.58)

where K and K are covariances of u(t) and u(k), respectively. The sampling
interval utilized in the above discretization is chosen to be T/N. Thus. there
will be N observations for each horizontal scan. Since there are N horizontal
scan lines, the final discrete observation is on an N X N grid.

Example 4

Continuing Example 3, we obtain:

(0996 0 0 0 0

0 0.983 0.031 0 0
A= |0 -1.22 0.97 0 0

0 0 0 0926 0.3

Lo 0 0 -4.77 0913
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[ 0.02 0 (] 0
0 0.02 0.12 0
BKB'= | 0 0.12 0.60 0
0 0 0.01 0.07
| 0 0 0.07 0.49 ]

Utilizing the model given by Eq. (5.57) with parameters given by Eq. (5.58), a
(one-step predictor) recursive estimator may be dusigned (see Chapter 4). The
equations are given for the sake of completeness.

Xk + 1) = [A4 - FKk)C) 3(k) + AKk) y(k)

Pk +1) = [d4 - Ak)C) P(k) |4 - F(k)C)' + BKB' + F(k)F'(k) ¢*

F(k)

AP(K)C' [CP(k) C' + 03]} (5.59)

The (one-step predicted) estimate of the image is. therefore,
CL(k) = (k)

that is, P(k) is the best estimate of y(k), obtained recursively in real time.
where ¥(») is the observation associated with the grid point immediately
ahead of the scarner position.

Example §

The signal y(k) is generated by using the image described in the preceding
example and adding white noise with variance 0®. Let us define a measure of
signal-to-noise ratio by:

p = Peak-to-peak variation of signai
- 0

197



The peak-to-peak uariation of the image is 7.1. Two values of p are considered
here, namely, 7.1/3 and 7.1/10; the corresponding values of y(k) and their
one-step predicted values y(k) are shown in Figures 5-2a and 5-2b and 5-3a
and 5-3b, respectively.

5.3.5 Implementation of Required interpolation

1t is clear that image enhancement. from the point of view of scanner
output, represents an interpolation problem; i.e., it is desired to determine the
best estimate of (k). 0 < k €N, given the observation ¥(0), ¥(1), - - -, ¥(N).
In general, the interpolation problem is far more complicated [10] than stan-
dard Kalman filtering. However, since for the image enhancement considered
here the length of the data is fixed (V) and, furthermore. the observation is
usually available for additional repeated processing, it is possible to obtain two
one-step predicted values of y(k), denoted by P(k) and P(k), one by running
the scanner in one direction starting, for example, at the top left corner of
the picture and the other by running the scanner in the reverse direction
starting at bottom right comer. Associated with these estimates are estimation
error variances denoted by 62(k) = Eﬁ(k)f” and 3%(k) = CRKC, respec-
tively. The two estimates must be combined to yield the optimal interpolated
(smoothed) value y"(k). Thus. a brief discussion of combining two estimators
is warranted.

Suppose we are given two state estimat~s, %(r) and X(r), of the same state
variable x(z). There are two cases to consider: either X(r) and ¥¢) are corre-
lated or they are uncorrelated. We shall combine only the case in which both
are uncorrelated; i.e.,

Elx-X] [x-%X]"=0 (5.60)

In this case the optimal estimate of x, denoted vy x°(¢), is given by:
x*=PF IR+ P (5.61)
P =P+ Py (5.62)

where P and P are the error covariances of § and ¥. respectively. Thus.
applying Eqgs. (5.60), (5.61), and (5.62) to obtain (k) = (X and ¥ = (¥
yields:

~2 2
ya(k) = [ (k) A(k) + ‘a (k)
62(k) + B2 (k) 52(k) + B2(k)
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Example 6

Considering the preceding example. the covariance M%) is Eq. (5.59) newrls
reaches iy steady-state value in about two or three scan lines, Consequently.
OlA) = B1k) for most of the picture. and Eq. (5.03) reduces to.

. i 2 =
¥ k) = [BA) + A {5.04)
Equation (5.63) was implemented. and the results for p = 7.1/3 and 7.1/10
appear in Figures 5-2¢ and 5-3¢. respectively.
Caretul observation of Figures 5-2b and 5-2¢ (or 5-3b and 5-3¢) revealds a

consistent vertical correlation. which is attributed to the approximation of #7)
by trunsposing the originad picture and re-evalusting v (&), The two vaiues are

Fig. 5-2. Observation and Estimates for » = 7/3

DRIGINAL PAGR IS 1%
OF POOR QUALITY



S

OBIGINAL PAGE B Fig. 5-3. Observation and Estimates for » = 7/10
OF POOR QUALITY

averaged and are sepresented in Biewes S.2d and S3d o conesponding
vabies of oo In wha follows the apprsdmation B ot improved,

o s S s e

5.4 PARTIAL RANDOMIZATION

The aantdomization of £ oover thie perind 7 had the mtaitive appeat that of]
points of the pietnre are weighted equully, While the results conveming this
particalar approsimation to @ certain subiclass of nomstationan corhtion
funetions bave dndeed Reo wanitvine. b auy Jead o wome shortoomings, bor

esample. the extreme right edge of u scanned Tine and the extreme feft edge
of the pext line would be weighted o ias adjacent points of g line. In order
fo ephance the quality of om approsimation, we st discuss the dea of
partil mundomization, which asumes o s randomly distributed over subinter
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vals of [0.T]. Intuitively, it can be seen that the more the number of subdivi-
sions, the closer we approximate the correlation function of the scanner out-
put. Thus, we shall subdivide the image in the manner given below.

Let us subdivide [0, 7] into Af parts such that:

0=T,<T,<T,<...<T, =T (5.65)

Let An be defined as:

AnéTn- Tn_l,forn= 12....M (5.66)

Now for given t = jT + o, where 0 € lTn_l. 7], in a matner to that before,
let qr‘(l) be a random variable such that:

q,(N = sGT + §) (5.67)

where £ is assumed to be uniformly distributed over [Tn_l. Tn] for n =
1,2,...,M and qn(t) is rot defined elsewhere. Now we shall prove the fol-
lowing theorem.

Theorem 3

The random process qﬂ(t) defined by Eq. (5.67) is stationary.

Proof

It is easy to verity that.
I:qn(r) =0
by construction of qn(r).

Next, we shall prove that £q_(t)g (1 + 1) is a function of 7 (or, equiv-
alently. v) only. Eqn(t) qn(l + 7) can be calculated as follows:

£q,(1) g (t+7)= Et;Ess(jT +E)s(iT +jT " £+ ) (5.68)
where (see 5.17):

r=iT+y, i=02122 ..., 0Kt+7<ANT (5.69)
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amd ¢ s wmiformly distributed over [T _..T.I and |9} <A.. For 1<9
<M, it is dear that  +y < T Utilizing (5.19), we obtaia:

T
Eq'(t)q‘(rfr)szl: [ aE's(iTi'o)s(inlTi'cf-,)do
Ta-t

1 T‘ Tﬂ = 1.‘_.
3 R(y.)de = ——— R(1.i} =R(%.i)
L ] r‘_l 1

.70

However, for £ € [T, .. T} = [T,,_,. 7. § + 7 may no longer be less than
T. Unilizing Eq. (5.19) once move, we get:

T
Equ(Day (e +1) = Kl;f EST +ap(T +iT +o+7)do
T

M-1
1 T-v 1 r
= — R(7.4i)do + — R(Y-T, i+ )do
a, a,
Th-y T-r
Ay-7 Y
= —3— Rad+ 3= RO-Ti+ 1 5.1)
M /Y]

where | 11 < A,,, which concludes the proof.

Let S n be defined as follows:
S, s {r:1 € (T.jT + An),i=0.l,....N- 1} 5.7

where A 5 defined by Eq. (5.56). Hence. the entire picture consists of the
collection of partitions §,. 5,. . ... Sy as shown in Figure 54.

Let 6(1) be the observatior. given by:

A1) =s(t) + v(r). €S, (5.73)



Fig. 5-4. Partitioned image

where »(r) is the white noise of zero mean and variance o2, Now we can state
a very important result via a theorem.

Theorem 4

The second-order statistical information of s(r) and 0(¢) for t €S, is suffi-
cient for obtaining the best linear mean square estimate of s(f) denoted as
N1), given the observation 0(r). :esl. The optimal solution is unique and
independent of the particular generating model of signal process s(r).

Proof
Let L(a(7), ) be the operator defined by:

T
L(a( 7)) 0(7) éf lcaz(fw(r) dr
0

(5.74)

T+T, '
+ [ o) (Mdrt.. .+ [ a(7)0(r) dr
T it



where ofr) is a scalar function. We are interested in minimizing:

Els(n-qn)% €S, (5.75)

where N(7) is restricted to a linear function of the observation 6(r), T < ¢ with
both r and ¢ belonging to S, . Consequently, N¢) has the form given by
Eq. (5.74).

It is desired to find that ofr), denoted by a®(7), which will minimize
(5.75). Using the ideas of calculus of variations [8], let a®®(7) be any arbi-
trary function of 7 and € be an arbitrary small scalar. Letting

o7) = a%(r) + ea®®(1)
and substituting this in Eq. (5.75) yields:
E[s() - L(a®(7) + ea®°(r). ) 0(7)]? (5.76)

where the expectation is over ¢ and 7.
If a®(7) yields the minimum value for Eq. (5.74), then the coefficients of

the term in ¢ in the expansion of Eq. (5.76) must be zero. since € can be
chosen small and with arbitrary sign. It follows that:

EL@®°(r), &) [6(r) (s(t) - (1)) =0

Or. in the expanded form,

T
E [[ a°°(r)0(1)|s(t) ~S)) dr+ ..+
0

t
/ a®%(1)0 (1)[s() - T(D] (‘r] =0
iT
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Since the above equation must be satisfied for any a®%(r), we must neces-
sarily have:

Els(D-5(0] 0(r)=0.for0 <1< T,

Els()- 5] 8(r) =0, for TS T<T+T,

Elsty -5} 0(r) =0, for ;T < 71
which is the orthogonality principle. that is,
E[st)- 5(1)] 6(1)=0.for7.t €S, and 7 < ¢ 5.7

The solution of Eq. (5.20) yields the optimal solution r). Equivalently,
Eq. (5.77) may be written as:

Es(6) 0(7) = EX0) 6(7)

where §{¢2) is given by (5.74). Hence. we have:

Tl T+T'
Es(r) 0(7) = [ a®(r) EO(7) 04) dr + l a@(r) EO(r) 0(1) ’
0 T

[4
+/ a®(r)E0(r)0(8) dt
iT

which implies that the optimal solution depends on the second moment
statistivs of s(1) and 8(f) over SI only.

Example 7

Consider a square picture subdivided into a 32 X 32 grid. et 7= 1 second
and ¥ = |- The signal is a 20 X 20 square starting from the thirteenth row and
the first column. Let m and n represent specitic rows and columns, respec-
tively. The above signal is represented by the brightness fevel hom, 1) = 1.506,
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where a signal exists. and -1 otherwise, resulting in a zero mean sample
function. As a first approximation, let us choose:

Rz, D)= aexp (-p, |2l - g lil)

where a, p,. and g, are to be determined. Computation of the sample power
gives rise t0 a = R(0,0) = 1.56. The comelation between two adjacent grid
points is calculated as 1.394, which is the value for R(1/32,0) or R(O.1).
Hence.

R(z, i) = 1.56 exp (-3.44|zi - 0.107{i])

Example 8

Let us partition the above picture into three parts § " S, and S, where
S, is given by Fq 15.72). We subdivide [0.1] as tollows:

0=T,<T,<T,<T,=1

with

Then, Eq,(1) q,(t + 7) for * and ¢ + T € S, can be calculated by utilizing Eq.
(5.70) and is given by:

Eq (1) q,(r+7)=1.56 exp (-3.44] 7] - 0.1071dl)
Similarly, Eq,(1) g,(1 + 7) fore,t+ 1€ S2 is given by:

Eq (1) q (1 + 1) = 1.56 exp (-3.441 9| - 0.1071i})
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Equ() gyt + 1) for .t + 7 € S, can be calculated from (5.71) and is given
by:

a,-7
Eq3(t)q3(t +7) = 1.56[ SA exp (-3.441v1 - 0.107/i])
3

A

+ L exp(-344]y- 1]|- 0.107}i + ||)]
3

5.4.1 Dynamic Modeling of image Statistics

Now, for any 1 € n < M, we wish to derive a differential equation model
whose soluticn has an autocorrelation function approximating bq"( ?) q, (t +
7). We subsequently intend to utilize a Kalman estimator for each 7, whenever
the signal q, (1) is contaminated by additive whnte noise. But, from
Theorem 3, thc linear minimum mean square estimate g_(¢) is independent of
the particular dynamic model generating the signal process q, (r). Hence, it is
sufficient to devise any stationary correlation function which matches the first
two moments of qn(t) for t GSn

Again, without any loss of generality, we let n = 1, since the analysis
would be similar for > 1. Let the dynamic mocel

X =A,x() + B,u(n)

(5.78)
2e) = Cyx()
be such that its output correlation function denoted as ¢, (r) satisfies:
9,(7) = Eq (1) ql(t tr)fortt+7€ Sl (5.79)

where x, (#) is an n-dimensional vector, u(r) is a white noise vector. and () is
the scalar signal whose autocorrelation function is @ (7). The procedure fol-
lowed is to present an approximation to é, (1), denoted as ¢Ia(r). as a sum of
terms such that each term can easily be modeled. The procedure has been
discussed: however, we shall repeat it for the sake of completeness.
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Let us decompose ¢, () into the product of two functions E,(r) and ¢,(7)/
£,(7), where §,(r) is chosen to saticy £ (iT) = R(0,/) for all /, and £, (1) is
taken to be a combination of non-negative exponentials, i-e.,

1
§(M=Y, Lexp(-A\ltl)
=1

The function p (7) is chosen to be a periodic function approximating
¢|(‘r)/£l(r). The approximate correlation function is then,

8,0 = £, p,(D) (5.80)

A natural candidate for 2,(r) is to choose p (7) as:

J

ot

p,(7) = Z a; cos :;T’ T (5.8
i=0

Hence, an element of the correlation function p,(7) has the form:

A 2nj
I‘a] exp (- illl) cos =5 7

and there are (J + 1) I such elements. A differential equation model with
white noise input can simply be constructed to model each of these terms.
Each will be a second-order system except those corresponding to j = 0, which
will be of the first order. If the white noise terms are assumed to be mutually
independent, the collection of all these differential equations defines 4, B, .
and C, and represents the desired model for ¢, (7).

Example 9

In Example 8, due to the exponential nature of (z, i}, we choose:

£,(7) = R(0.0) exp (-0.107|71)



Only three terms in (5.81) are retained; that is, J = 2. The resultant 9,,(7) is:

2
8,,(r) = 1.56 exp (-0.107I71) Y a; cos 2mr
=0

where ay = 0.396, a = 0.445, and a, = 0.0131. The autocorrelation term:
1.56a, exp (-0.107{7|)

is modeled by xl(t), where
x, =0.107x, + 0'365"1

The second term in the correlation 9, ,(7) is modeled by:

%, =x, +0368u,

X, =-39.4x, - 0.214x, + 2.42u,

The third term is modeled in a similar manner. The u, u,, and u, represent
independent white noise terms, each with zero mean and correlation function

5(7), where & is the Dirac delta function. The final results are:

[-0.107 0 0 0 o |

0 0 1 0 0
A= |0 -394 -0.214 0 0

0 0 0 0 !

| 0 0 0 -1577 -0.214




(0365 o o

0 0356 0
B = |0 242 0

0 0 0.065

Lo 0 0.834 |

C,=f1 1 0 1 0

The dynamic model generating the signal process §,(¢) is identical to that of
s,(¢). However, the dynamic model corresponding to the signal process s3(0) is
given by:

X = A,x(0) + B,u(r)

1) = Cyx(1)
where
A =2,
and
0334 0 0 |
0 0336 0
B,=|o0 2.1 0
0 0 0.11
n 0 2.6S_J
¢ =C
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5.4.2 Design of Estimator

From Eq. (5.70) and (5.71), it follows that two different dynamic models
corresponding to the correlation functions exist, one for 1 < & <M and the
other for £ = M. In what follows we intend to utilize a digital computer for
the estimation process. The model corresponding to 1 € & < M is given by
Eq. (5.78). For k = M, let the corresponding dynamic model be given by:

x = Ayx(t) + B u(r)
_ _ (5.82)
() = Cppx(t)

i.e., the dynamic model generates the signal process y(r). Let us assume that
both dynamic models, given by Eq. (5.78) and Eq. (5.82), are of the same
dimensions. Discretizing Eq. (5.87) yields:

x(k+1)= Alx(k) + Blu(k)

(5.83)
(k) = C,x(k) + w(k)

In addition, the model given by Eq. (5.83) contains the observation
(background) noise element »(k), which is assumed to be white of zero mean and
variance 02. The parameters A, B,, C, are related to 4,, B, ,and C, by:

A=exp (Zn —1%)

’ ™ " T 1 > 1 D' g U T
B K B, = exp (Al 17) exp(-A4,5)B K B, exp(-A,s) exp (Al N—)ds
o

¢, =C, (5.84)

where exp is the exponent, and K, and K, , are covariances of u(k) and u(r),
respectively. We discretize Eq. (5.82) in the same manner, Let

x(tk+1)= AMx(k) + B, u(k)

(5.85)
k) = Cppx(k) + (k)
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with its corresponding parameters given by:

- T
A, =exp (AM —ﬁ)

TIN _ T o
sty [ o (1,5) oo nBRB
(5.86)
exp (-4,s) exp (Z;" %) ds

Cy=Cy

Example 10

In this example, let (k) denote the estimate of C, x(k) or C, x(k). Every k
can be writtenas k=32 +j,fori=1,2,...,Nand 1 €j <32, where i is the ith
scanned line and j determines the position on the ith scanned line. Continuing
Example 7-9, we can see that the start of the three vertical strips corresponds to
the values of j= 1, 11, or 21. For 1 £ < 21, we utilize model Eq. (5.83), since
the values of n would be either 1 or 2. For other values of j, we utilize mode] Eq.
(5.85). Now for the values of j= 1, 11, and 21, the best linear mean square
estimate of y(k) must be the optimal combination of (k) and (k - 32), where
the two estimates use a portion of the observation twice. However, the
overlapped portion of the observation is very small, and the optimality wil} not
be significantly affected by assuming the estimators to be independent.

The formula for combining two independent estimates ¥ and ¥ of the same

state variable x to obtain a combined estimate x * with its associated covariance
error given by (see Chapter 4):

x"=P'P ' X+P ') (5.87)
P =P+ P! (5.88)

where P and P are the error covariances of & and X, respectively, thus, applying
Egs. (5.87) and (5.88) to $(k) = Cx(k) and J(k) = C%(k) yields:

(k) (L) P(k) + 7 k)
y = 4 T )
52(k) + (k) 32(k) + P (k)
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where y° denotes the combined estimate for y(k). Continuing Example 9, we
obtain:

(0996 0 0 0 0o |
0 0983 0031 0 0
A=A, = |0 -1223 0970 0 0
0 0 0 0926 003
K 0 0 475 093
[0 o 0 o o |
0 001 003 0 0
BKB, = |0 003 o015 0 o
0 0 0 0 o
0 o 0 0 001
0 o 0 0 o |
0 o 002 © 0
BK,B,= 0 002 011 0 0
0 o 0 0 0.02
0 0 0 002 0.4 |

Utilizing the models given by Egs. (5.83) and (5.85) with their corresponding
parameters given by Eqs. (5.84) and (5.86) respectively, a (one-step predictor)
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7

R 7 Coy | . 1
R R RISt

recursive estimator for each system may now be designed [3]. The equations for
{5.87) are piven for the suKe of completeness:

Rk + 1= |4, - FU0C, 1RG0 + F k)

Pkt )= 4, - FRIG IR A, - FC )

+ B KB, + F (WF) (k)6?

F (k) = AP RIC (€ P RC + 6P

A similar se1 of equations exists for {5.85) the only difference bomg g dunge
of subseripts from 1 w M

The onestep proedicted  gstimale Tikd ol vA) 8 found recuisively 1
time, ik} is the observation associuted with the pnd immediately abead o
suneT position,

Example 11

The signsl 70} or ¥(&) is generated by using the image described in the
preceding example and by adding white noise with variance o?. The peak-to-
peak variation is 2.56. Let us select as 4 measure of signal-o-noise ratio:

peak-to-peak variation of signal
pe .
¢

A value of p of 2.56/10. which represents 3 very nuisy image, wus utilized.
Figure 5-5 represents the uncontaminated image, where the corresponding values

Fig. 5:5. Uncontsminated Image
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of »(k) and their one-step predictors are shown in Figutes 5-6a and 5-6b,
respectively.
Example 12

Since the length of data is fixed and the observation is available for additional
repeated processing, it is possible to obtain two one-step predicted values of

v(k), denoted as ¥(k) and T(k), starting from the top left corner of the image

and the other by running the _anner in the reverse ‘lirection starting at the
bottom right comer. Associated with these estimates are estimation error
variances denoted by 3°(k) = CR&) C' and B*k) = CRK) C'. respectively. The
result of combining the two estimates for o = 2 56/10 appears in Figure 5-6¢.

=~ _ &=

-

a) WS (b

fc)

Fig. 5-6. Observation and Estimates for » = 2.56/10

5.5 CONCLUSIONS

The role of recursive (Kalvian) filtering in image processing has been
established. The procedure is apphicadle to these mmages charactenized statisti-
cally by their mean and correlation Tunction. A recisive estiation approach s
very dJesirable due to its computational advaniages. The effectiveness and the
computational simplicity of our method to enh-nee contaminated images have
been demonstrated via examples.
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APPENDIX A
DIRAC DELTA FUNCTION

We have often seen the “delta™ function 8(x) described as:

f&(x)dx= 1,6(x)=0, forx #0

We must point out that 5(x) is not a function, but a mathematical symbol.
We shall discuss the definition of 5(x) below.

Definition 1
A function ¢(f). which is differentiable infinitely many times, is said to
belong to class C or. symbolically, ¢ € C if the following conditiun is satisfied:

lim [ 69(1)) =0, foralliand j > 0
lglv oo

Note that q)(”(t) denotes the jth derivative.

Now we need to define another - ssion.
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Definition 2
The sequence of functions gi(t),gz(t), ... of class C is said to be regular if
for any function ¢(t)EC:

lim (g,.¢)2 lim 8,(0) (1) dt

n-sa n=roo -0
is fimte.
Example

Consider the sequence

{/Zowcnt} = 5,00

The function gn(t) is of class C and

lim \/%exp (-nt?) > o
n-roo

However, for any function ¢ € C,

lim (g, ¢)
n—eoo
is finite.

Definition 3

Two regular sequence of functions {gn(t)} and {hn(r)} are equivalent if

lim (g,(1), )= lim (4, (). 0)

n-—+o n-so

We shall denote g, ~ hn.
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For example,

{ /z_ exp (_mz)} and { ! exp (12_)}
Vo Vim m?

are equivalent, even though the functions are not equal to each uther.

Definition 4

If the Limit of {g"(t)} (with respect to a function ¢ € C) converges to a
function g, i.e.,

9= lim (g, 9)

n—w@

then g is called a generalized function and g ~ {g"}. A generalized function
denoted by u is called a unit step function if

(u, ¢9) = lim fun(t)¢(r)dt=f u(r) ¢(0) dr

for all classes of {u"(t)}. where

L,ift>0
u(r) &
0,ifr<0

Example

The sequence
exp 1 5+,z . ifT>0
n\r
u, (1) =
0. ift<0

represents a generalized unit step function.
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Definition 5

The unit impulse or Dirac delta function 6(¢) is defined as:
8~ {u (0}

That is,

G.0)= lim (u,.0)

n—eo

It should be emphasized that 8(¢) is merely a symbol representing the total
class of equivalent regular sequences {un(t)}. Hence,

f 8(t) ) dt = lim u, (1) 9(c) dt

n-»vo -0

Example

The sequence {u;(t)} given by:

[—’5- Zt] exp [- l(£+ t’)] . ift>0
2 n\t

0, ift<0

u:,(t) =

is only one sequence which represents 8(z). Other sequences are:

‘/Eexp (—m‘z) ! exp (——!—2—) etc.
L " V2 m? '

The following important properties of 5(f) wi™ hold:

g>o0

() f 5(1) £ () dt = [(0)

<0

where f is differentiable over the interval a <1 < 8.



>0
2) f‘ F()d(t-arde=f(a)

<0

Both equations can be proven from the definition and utilizing the
integration by part.

~0- 0
3) 8(1)dr=1,8(1)=0,t#1
a<0
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APPENDIX B
VECTOR SPACES AND MATRICES

Definition 1

Let V be a set; then V is called a linear vector space over the real or the
complex field if the following rules are satisfied:

MKxeV,yeV, thenxt+ty€eV
Q x+ty)tz=xt+t(y+2)

(3) There exists a “zero” vector 0 € V such that x + 0 = 0 + x =x for
every x€V

(4) For every x € V. there exists another x~ € ¥ such that x +x~ =0
S)xty=yt+txforalxandy €V
There exists a set of scalars (either real R or complex C) denoted by Greek
letters such that:
(6) (a +B)x =ax + fix (Distributive Law)
(7) afx + y)=ax + ay (Distributive Law)
(8) (o) (x) = a(Bix) (Associative Law)
MN1-x=x
(10)0-x=0
The most important example of the vector space is R". It can be shown

that a set V is a vector space iff for any x,y € V and any scalars o and 8, ax
+PyEV.
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Definition 2

Let ¥ and W be linear vector spaces over the same field of scalars, and let
T be a mapping (transformation) ¥ - W such that:

M) Tx+y)=Tx+Tyforallxand y EV
(2) Mox) = aTx for all x € V and all scalars

Then T is said to be linear.
Definition 3
A set of vectors {xl,xz.....xn}isa basis in V if:

(1) The sei is linearly independent (no x,’s can be written as a linear
combination of the other vectors).

(2) They generate the vector space V, i.e., every x € V can be written as a
linear combination ofxl,xz, s Xy
Definition 4
The number of linearly independent vector n in Definition 3 is called the
dimension of the vector space V.

(M) Ax +y)=AKx)+ T(y), foranyxandy €V
(2) A(ax) = aA(x), for any scalar aand x €V
Definition of Matrices

Let {e,,ez,...,e"} be a basis in ¥ and {fl,f ,...,fm}beabasisin W,
and assume A is a linear transformation

AV-W

Then A(e,) € Wforaly=1.2,...,n which implies that:

Ae) =) a,f, (B.1)
i=1

or in the expanded form:

Ale) =a, [, *a, [ +...%a,, [,

224



Ale))=a, f ta, [, +...va, [,

A(en)=alnfl +a2nf2 oot amnfm
Definition §
Now the matrix of A denoted by M, with respect to the above basis is
defined as:

I'a" a, ...amw
a4y Gy "0y,
MA = . = [alI]an
a a ...a
L ml m2 maj mXn

Thus the matrix [a, lmx n depends on the linear transformation A4 as well as
the bases in V and 4’

Let A and B be linear transformations with respect to the same spaces;
then the reader is advised to prove the following properties:

(1) My + M, = [a, +b,]

mxXn

M, =oM,

where M, and M, are the matrices with respect to the operators 4 and B, a
i,: :Bscalar, and a + biilan is the matrix with respect to the operator

Definition 6
(1) If Ax = x for every x, then the operator is called the identity and is
denoted by /
(2) A is a zero operator if Ax = 0 for every x € V.
(3) If V' = W, then A4 is said to be invertible iff Ax, = Ax, implies x| =

x, and, for every y € V, there exists an x € V such that 4x = y. If 4

is not invertible it is said to be singular.



Thus, for a zero operator A, the corresponding matrix will have zero
entries. It can also be shown that A is invertible (nonsingular) iff Ax=0
implies x = 0.

Let V, W, and A4 be as before; then for every vector x € V:
n
x=2 ke (B2)
=1
where the ¢ i's are scalars, called the *“‘coordinates.” Since Ax € W, then:
m
Ax=)" 7,1, (B.3)
=1

Now we can claim the following important result via a theorem.

Theorem 1

If we designate I" and @ by:

_7| - r.E‘_
7, £
r={ " |and &=
Then the following is true:
r=M,¢

or, equivalently,

n
'y'.=z:a"¥,,.. fmi=12.....n
i



Proof

Ax = Zsi =i£,ia,,l, i(z :,'El)ft

=1 =1 i=1 J=1

where Eq. (B.1) has been used. Now the above equation equaied with Eq.
(B.3) yields the result.

Definition 7
Let {el,ez,...,en} and {h h h } be bases in V. Smceh € V for
alj=12,...,nand {el,ez,.. e }lsabasxs then

3 Z Pie,j=12,....n (B4)

Now the matrix P = [P, is called the matrix of transition from the basis
{el,ez,...,en}to the‘éas:s {h ...,hn}.

Let Q denote the matrix of transition from {h ,h,,... .k} to
{e,»e,,... e} then it is simple to venfy that:

Qg=pr"! (B.5)

Let x € V, then

"‘Zfﬁ’ﬁz 1

i=1 i=1

where g,'s and 7,’5 are coordinates.

It would be very easy to verify that:

n
g = E Py, (B.6)
=1
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or, equivalently,

= : B.7)

sn pnl Pnz"'P"" 7n
L L

With the above background, we are ready to state a major result in linear
algebra given via Theorem 2. The proof will not be given here.

Theorem 2

Let T be a linear transformation from V' - W and let {e,, €y, en}and
{e.,ez,...,en}be bases in V and let {f,.f,.....f, )and {f',f,...,fm}
be basis in W.

Let & denote the matrix of T with respect to bases {el,ez, cea€, }and
{fn’fz"' oS, } and € be a matrix with respect to the bases {el, 2
. ,e } and {f A f }, respectively. Also let S and U denote the
matnces of transmon from {e., €15 -r€, } to {e .. e } and from

U1y o1, }to{f f....,f }, respectively. Then
€=U'AsS (B.8)

For Proof see any linear algebra book.

Important Corollary
IfT:V -V, then

€=S"'AS (B.9)
Because S = U, its substitution in (B.8) will yield the result.

Definition 8

We r.ow define eigenvalues and eigenvectors, which are used often in our
analysis.



let A:V = V; then if
Ax = Ax

where x € V and A is a scalar, then x is called an eigenvector and A is calied
the eigenvalue. In general, O is an eigenvalue iff Ax = Ox = 0 for some x # 0,
ice., A is singular (not invertible). If A = I (identity operator), then Ix = x <>
A =1. In the definition Ax = Ax, we say x belongs to A.

Discussion
(1) If Ax = Ax, then

Ax - =0—=(Ax-M)=(A-A\)x=0

- Thus, x is an eigenvector iff (4 - AJ) is a singular operator which is equivalent
to saying that:

determinent M, _, ,, = IM(A_M)I =0

(2) From now on, we shall use 4 for M, if there is no confusion about
M, with respect to the specific basis, since there is a 1-1 correspond-
ence and onto mapping from 4 to M, (isomorphism).

Definition 9

If a matrix 4" satisfies:
A" =a@)"

where t.he bar denotes the complex conjugate, and T denotes the transpose,
then A° is said to be an adjoint matrix of A (operator). If 4° = A, then 4 is
said to be self-adjoint.

Definition 10

An inner produ.¢ on vector spac. +° (over the real or complex field) is a
complex number such that for every x,y,z € V and for any scalars a and
the ‘ollowing are satisfied:

M) &) =(.x)
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(2) (ox +B,2) = ofx, 2) + B(y, 2)
(3) (x,x)iffx#0

Definition 11

The norm of a vector x denoted by |[ix|l is defined via:

lixll? = ¢x, x)
Now we are ready to make a very important definition.

Definition 12
If A=A4", then (4x, x) is said to be positive definite if

(Ax,x)>0,forall x #0

and negative definite if

Ax,x)<v, forall x #0

Similarly, if 4 satisfies

(Ax,x)=0,forall x +0

ther A is said to be positive semi-definitc; the definition of negative semi-
definiteness is done in a similar manner.

Definition 13

If A is none of the above, A4 is said 1o be indefinite, that is, (Ax,x) >0
for some x and (Ax, x) <O for another x.
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Definition 14

The quadratic form of A = A" is defined via

T 35 0T

=1 f1

where El's are the coordinates of the vector x.

The above background should suffice to support the material in the text.
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APPENDIX C

FOURIER AND BILATERAL LAPLACE TRANSFORMS
AND THEIR INVERSIONS

The power spectrum is the Four'2r transform of the wide-sense stationary
autocorrelation function. Thus, the manipulation of the Fourier transform and
its corresponding inverse is extremely important. If a function £ (¢) has a Fourier
transform. it will also have a bilateral Laplace transform. The inverse of each
transform is unique; however, it is easier to obtain the inverse of a bilateral
Laplace transform. Thus, the procedure of obtaining the inverse Fourier trans-
form is to obtain the ccrresponding bilateral Lavlace iransform and apply the
inversion formula. Thus, in whai follows, a discussion of Fourier and bilateral
Laplace transform is made.

Before we gt involved with the concepts, we need some mathematical tools
such ax definitions and theorems; however the proofs are not provided.

Definition 1

A functicn (complex) f(s) is analytic at So if fis single valued and dif-
ferentiable at 34

Theorem 1 (Cauchy’s Integral Theorem)

Given the function f(s) such that f is analytic at all points vithin and on
any closed curve C in the complex plane, then

f f)ds=0
(o

where the integral designates the ‘ntegral along the closed path C.
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Theorem 2 (Cauchy’s Integral Foanula)

Let f and C be as above; then for any point @ which is an interior point in
C, the following is true:

=1 [ f@)as
f(a)-zﬂ.L o (.1

The result is proven via the aid of Theorem 1. Thus, in Theorem 2 every
analytic function f(s) is completely determined in the interior of a given close
curve C, where the values of f(s) are given on C only. Next the last two
theorems are extended to get an important result which we shall give via
Theorem 3, but first the singularities.

Definition 2
If £(s) is not analytic at point LI then $o is called a singular point. If there
is a neighborhood of 5 = 8o such that f (s) has no other singular point, then s,

is called the isolated singularity and, unless specified otherwise, all the singu-
larities in the appendix ae isolated singularities.

Example

J(s) = 1/s has an isolated singularity at s = 0, since the neighborhcod given
by lsl = p > 0 contains no singularity other than 0. Similarly,

s-1

fe)=—
s(s* +4)

has three isolated singularities at s = 0, s = 2j, 5 = -2j. The function

fs)=exp { ! 2}
}-5

has two isolated singular points at s =1 and s = - 1.

Note that in the first two cases, the singularities are poles, and in the third
case it is not a pole.
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Another Example
The function

=

has singularities at s = £ 1/(kn), k = 1,2, .. .. These singularities are isolated;
however at s = 0, the singularity is not isolated, regardless of how small the
radius p of the circle 1sl = p may be.

fé)=

If £(s) has an isolated singularity at s = s, then f($) can be represented via
the infinite series:

b_, b_,
@) =by+b(s-5))+by(s- sV LR 801—(8_ W PN
oo o0 b-n
= 2 b,G-s,) + E (€.2)
n=0 n=1 (S‘So)"

Definition 3

The above series is called Laurent’s series and b_, is called the residue of
f(s) at the singularity s =84
Definition 4

A special case is where

b b

b_,

- -2 ~m
f()= b (s-s. )+ + +--- 4 (C.3)
n2=o n o s-so (s_so)2 (S'So)m
The singularity (isolated) s = s, is called a pole of order m.
Remark. For Eq. (C.3) b_, is given by:
o A" 6 s)™ )
bt T -1y o1 (€4
.V:So



If m=1,then s =5, is said to be a simple pole and (C.4) reduces to:

b= lm fE)G- s, s

-1
8"80

Theorem 3

Let f(s) be analytic in the given region R bounded by the closed curve C
and let s,,5,,....5, be the isolated singularities of f(s) in the interior of C,
then

f f@ds=2m) ¢_), (€6)
C k=1

where (b_, ), is the residue corresponding to s, .

The result is called the residue theorem which states that regardless of how
complicated the calculation of integral of f(s) around the contour is, it can be
obtained by the summation of all residues multiplied by 2=j.

Equation (C.6) will play a major role in the inversion process of a trans-
form.

Definition 5
Let f(f)and F B(s) be functions defined by:

F, B(s) = f F () exp (~st) dr C.n

Then we say F B(s) is the bilateral Laplace transform of f(r), provided that
FB(s) exists in some region o, << 0,



Theorem 4
If F B(s) exists, then f () can be obtained:

d+j
F@= -2%’ lim f FB(S) exp (st) ds (C.8)
d-j

R=roo

where d and R are given via the sketch and o, <d< o, (see sketch).

Y
e C
]
|
R 1 1
f Ib h
o: ?
|
vy
[
{ 18
g9

Proof

For the bilateral transform, the regions of convergence for f(f) is generally
given by ¢, < ¢ < g,. However, for the onesided Laplace transform, the
region of convergence is normally given by o > o,.

For t > 0, then we can show:

lim F B(s) exp(st)ds=0 (€9

R—= “cefga

and for ¢t <O:

lim f F B(s) exp (sf)ds =0 (C.10)
cha

R=>oo

Equations (C.9) or (C.10), together with (C.8), implies that abc may be
changed to abcefg for + < 0 and, for + > 0. abc can be changed to abcha.
However, either abcefg or 2bcha is a closed contour enclosing all the singula.-
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ities as long as R — oo, which implies we can directly use the residue theorem

(Theorem 3).

Thus, given ¢t > 0,

0= 53 | R@am@asTe.), €

where (b_,), is the residue of the kth singularity to the left of abc. For
t <0, f(r) is given by:

@)= ._% F@expds=-Y ¢_), (€12
abcha

where (b_,), is the residue of the kth singularity to the right of abc. The
negative sign signifies the fact that the direction of abcha is clockwise and,
therefore, negative. Thus, we have proven the inversion formula.

If £(¢) is absolutely integrable, i.e.,

f I£ () dt < o

then we shall define

HFlw) =f £(0) exp (-jwi) dr (C.13)

as the Fourier transform of f(f). It can be shown that given & (w), (1)
satisfies:

f(t)=2—'1; f F(w) exp (o) dew (C.14)



Basic Fourier Transform Pairs

@ GP) = FQ2nv), w =2y
Q) &) 1
o1 (@)
() cos wyt %IG(U - vy + 6@ + v)]
1 . ]
@) sin wyf ;[s(u - vg) - 8(v + vy)
1
©) sin (2aWr) I l 2w )
(2awt) -w 0 w
1
2T sin (22Tv)
©F—5 1 @aTv)
1
. 2 2w
™ |5 hm) /]\
Wt } v
2w 0 2w
(8) exp (iwol) 6w ~ vo)
9 8(t~7) exp (-jwr)
1
-‘—exp (-t/n, t>0
(10 1+ jwr
0, t<0
(11 exp(-ial?), a>0 2a
2 2
w ta
2 212
1 ~{t - m) c
12 ex oM — ————
( )\/Zr'o p{ 20° } exP('w 2)




Equations (C.13) and (C.14) are called the Fourier transform pair. Now if the
Fourier transform of f(r) exists, then for a fixed ¢ > 0, the Fourier transform
of £(¢) exp (-at) would also exist (it is absolutely integrable). Then

f [ (¢) exp (-01)) exp (-jwt) dt = f F@ exp [-(o + jwt)] dt

Let s = ¢ + jw and denote the right-hand-side of the integral as F(o + jw) or
F(s). Now it is obvious that the function f(¢f) exp (-or), given its Fourier
trapsform F(o + jw), is:

f@exp (-ot)= F'[Fo + jw)) = %f Fo + jw) exp (jwt) dw

The last equation utilizes the inversion formula of a Fourier transform. Multi-
plying both sides of the equation by exp (o), we get:

f(t)=21—"f Fo + jw)exp (0 + jw) t dw

Now making the change of variable s = 0 + jw will yield:

1
2nj

f@)= f F(s) exp (st) ds (C.15)

However, F(s) is exactly the bilateral transform F B(s). Thus, we shall utilize
the bilateral Laplace transform inversion formula.

Note that the inversion of both Fourier and bilateral transforms are unique
and if the Fourier transform of a waveform f(f) exists, so does its bilateral
transform. The bilateral transform FB(s) can be obtained from # (jw) in a
unique manner, by substituting:

Fyle) = #(jw)

$=jw
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APPENDIX D
A SPECIAL VECTOR SPACE

Let V, be an N-dimensional vector space over a complex field. Let
ir,f. ,...,fN} = {fi}’:| be any basis in V. If there is an inner product
defined with an associated norm, then it is a standard result that
{fl, f fN} can be orthonormalized. That is, {e‘}’i , isa basis such that:

1, ifi=j
(e, el.) =

0, ifi#j

Now for any vector x € VN, it can be shown that:

N
x= 2 (x, ei) e,
i=1
and

N
el = 3" Mx.e)?
i=1

The idea of orthonormalization can be extended to the infinite dimensional
case.
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An Infinite Dimensional Vector Space

Let L, denote the set of all piecewise continuous functions over [0,27]
such that:

27
f Lf ()% dt < oo (D.1)
0

It can be verified that L, is a vector space under the usual operations of

functions: (f + £) (£) = £ (1) + g(¢) and (&) (1) = a(f (©)).

Now let us detite the inner product (f, g) by:

27

o= rooa (D2)

0

where the bar denotes the conjugate. Thus, the corresponding norm is given
by:

2n
W =¢n= f If ()12 dt (D.3)
0

A simple computation shows that exp (jnt) for n = 0,£1,£2, ... are mutually
orthogonal in L, and it can be shown that:

0, ifm#nr
(exp (jmr), exp (jnt)) = (DA4)

2n, ifm=n

However, we can orthonormalize the collection

{exp Gn)}3Z7,
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by letting

en(t) = —\-/—% exp {jnt}

L, with an orthonormal basis is said to be a complete space. Recall any

finite-dimensional vector space is complete.

Let H be a subspace of L, which is generated by

e (==,

that is, H consists of all linear combinations of the form

where an’s are scalars,

Now for every f € H, we can write:

f0=3 ae®

n=-oo

where &, = (f, € ), and &, can be written as:

2n
a, =(fe)= ﬁj‘; f(D) exp {-jnt}dt

Thus, from Eqs. (D.3) and (D.5), it is easy to verify that:

Wiz = 3 Ife)?

n=-w
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Now remembering that:

2n
I 12 =f If ()12 dr

0

and utilizing the fact that «, = (f,e n), we can rewrite:

2n hd
f lfO12dr= ) la,l? (D8)
0

n=-co

Equation (D.8) is called Parseval’s equality.

Important Remarks

(1) It must be emphasized that the expansion

f@)= 2 %, €,(0) = ﬁ Z a, exp {jnt} (03)

n=-w ns-oo

is not interpreted as saying the ceries is pointwise converging to the
function. Equation (D.9) actually means that f € L, is given by:

__ 1 < .
0= \/51_',‘;_:.. a, exp {jk}

and converges to f in the norm specified in L,. That is:

2n 1/2
- £, = f If(r)-f,,(r)l’dr] >0  (D.10)

0

n—roo

(2) If we change 2n to T and the interval {0.2n] is changed to [-T/2,
T/2], we can then write:

f0 =Y ¢, exp {inw,t) (D.11)

n=-o
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where w, = 2a/T. Since
{exp {inwot} };;_”
are pairwise orthogonal,

0, ifm#n
(exp {jmwot}, exp {jnwot}) =

T, ifm=n
Thus, we have:

=Y ae0=Y VTce® (D.12)

n=-co n=-—co

where e, = 1/vD exp {nwot} and a = (f, e").

Parseval’s equality becomes:
T/2 -
I =f If ()% dr = E Ioznl2
-T/2 n=-~co

L3

= E I\/fcnlz=T i |cn|2

n=—oo n=s—oo
From which, we obtain:
| (T2 o
ff If(O1? dt = Z le, 1? (D.13)
-T2 n=—oo

The last equation is another form of Parseval’s equality.
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APPENDIX E
STATE VARIABLES

Let X(¢) be an n-vector such that:

X =AM X, X(,)=X, (E.D)

where X(¢) and A(¢) are continuously differentiable and A(r) is an n X n
matrix. The solution of Eq. (E.1) is given by:

X() = o1, 1) X(r) = ¢4, 1) X (E.2a)

where
= A1) 0(t,1,), Wleg, 1) =1 (E.2b)

This is easy to verify, since the solution of the differential equation for a
specified condition is unique and X(¢) in Eq. (E.2) will be a solution with the
initial condition:

X(tg) = olty, 1) Xy =1X, = X,
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Two Important Properties

Let ¢, mdtzbetwodiﬂ'erem times such that t, and:zare>to.'l‘hen
we have:

X(@t,) = ot,. 1) X, (E3)
and
X(Il) =o(,, ro) X, (E4)
Now if the initial condition is at ¢ , then X(t,) is given by:
.‘.'(rz) =, rl) X{tl) (E.5)
Substituting X{(¢, ) from Eq. (E4} into Eq. (E.S) yields:
X(t,) = olt,, 1) 0(t,,1,) X, (E.6)
Comparing (E.3) and (E.6) gives rise to:
ey, 0) = 0ty 0) 02, 2,) (E.7)
As a special case of Eq. (E.7), let r, = r,.. Then

[ ro) =[= ¢(zo, 6o, to)

from which

0,4 = dlrg. 1)) (E8)

Equations (E.7) and (E.8) are very important. li can be verified \hat ¢(-,*)
#0. From Eq. (E.8) it is obvious that the inverse of o(t, . 1,) is obtained by
changing the arguments ¢, and 1, to ¢ and ¢, respectively.



Example 1

From
X=2X, X=X,
Solve the differe;ltial equation via the transition matrix.

$=20. Oty t,)=1

will imply that
o5, 15) = exp {2(r - 1)}
Thus,
X)) = ¢(1,14) Xy = Xy exp {201 - iy)}
Example 2

Repeat Example 1 for:
X =a(t) X(t), X(5) =X,
Solution
p=al) olt.1)). #lg.ig) =1

implies that ¢;/¢ = (1) from which we get:

!
o(r,1,) = exp { f a(l)dt}
t

0
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Thus,

| 4
X()= X, exp {f a(r) dt}
4

General Solution with Forcing Function Inputs
Consider the genera! time-varying differential equation:

X = A(r) X(1) + B(t) V() (E9a)
Yu) = Q1) X(1) + D(r) UG (E9b)
Assume the solution X(¢) exis's and
X(to) = ){o

is the initial condition. We claim X(r) is given by:

i 4
X() = o(r.1) X, + f #e. 1)) 07 (A, 1) BQ) UN) d\  (E.10a)
fo

L4
=gin1) X, + f o(r. 1) BQ\) UQ\) d) (E.10b)
f
o

Let us verify Eq. (E.1C). For convenience, we shall not write the arguments in
t. Let

X(1) £ (1, 1,) Z(1) or, equivalently, Z(r) 2 ¢ (1, 1) Xty  (E.ID)

Taking the derivative of both sides yields:

X=6Z+¢Z (E.12)
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Equating the right-hand side of Eq. (E.9a) with (E.12) gives rise to:
AX +BU=¢Z + 62
Now from ¢ = A¢ we assert that:
0Z = A9Z = AX

where in the above we have used Eq. (E.11).

Substituting (E.14) into Eq. (E.12) yields:

¢Z = BU or, equivalently, Z = ¢~' BU

where upon integration, we get:

t
Z(r) = 2@ty + f 67"\, 1) BOY) U\ d
fo

Utilizing Eq. (E.11) and the fact that Z(to) = X(lo), we obtain:

(E.13)

(E.14)

(E.15)

(E.16)

1 4
X(@0) = o, 1) X, + f ¢, 1,) 67\ 1)) BO) Uy dN  (E.1T)
‘o

which concludes the first part of the proof.

To prove the second part, we make use of ¢"'(A, 1) = #(t,. A) which

implies:
¢r,10) 67 (N, 15) = 02, 10) B2y, M) = 9(1. )

Substituting (E.18) into (E.17) gives rise to-

t

X(t) = ¢(t, to) Xo + J- o(f, M) B(A) UQ\) d)
‘o
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which is the desired result.

Substituting (E.17) or (E.19) mwo (E9b) will yield the output. Therefore,

¥(1) = C()) X() + D(2) Un)

[ 4
= C(1) [gs(t, ro) Xo t f &(r, N) BQ\) UM dx] + D(1) ()
‘o

(E20)

Thus, the most important part of the solution is acquisition of the transition
matrix ¢(-,*), which is needed to solve X(¢). Once X(¢) is known, Y(f) can be
obtained immediately (see E.20).

To obtain ¢(+,*) for the time-varying case is not easy and the general
equation

¢ =AW o(1,1,), Mty ) =1

must be solved for. However, for the time-invariant case, where 4, B, C, and
D are constant matrices, the solution is considerably easier. Before discussing
this special case, let us first define:

2,2 L]
expAn@rsar+ Al AL, (E21)
Now for the time invariant case, ¢(r, ’o) becomes:
(1. 15) = exp {A(r ~ 1)} (E.22)

To verify (E.Z2) is very simple since

‘%exp {A(r - to)} = A exp {A(t - to)}

with oty ro) = A® = /. Now, without any loss of generality, assume tp =0
and let us state the following claim.
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The transition matrix exp {4t} is obtained as:

exp {Ar}= L Vsl - A)! (E.23)

Thus, exp {At} is the inverse Laplace transform of (sf - AL

The proof is simple. Take the Laplace transform of (E.9a) to get:

sd(s) - X, =Ad(Gs) + BU(5) (E24)

where &' (s) and%As) are corresponding Laplace transforms of X(-) and U(*).
This can be done since 4 and B are both constant matrices. From (E.24), we
can get:

AE)=GI- A" X, + (s - A)) B (s) (E.25)

Taking the inverse Laplace transform of the above and equating the result
with the right-hand side of (E.19) with ¢, = 0, we obtain:

exp {A1}= Ll - A)!

as asserted.
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